Difference between revisions of "Berliner Weissbier"

From Milk The Funk Wiki
Jump to: navigation, search
m
m
Line 26: Line 26:
 
* [http://barclayperkins.blogspot.com/2009/09/berliner-weisse-and-brettanomyces.html "Berliner Weisse and Brettanomyces" by Ron Pattinson.]
 
* [http://barclayperkins.blogspot.com/2009/09/berliner-weisse-and-brettanomyces.html "Berliner Weisse and Brettanomyces" by Ron Pattinson.]
 
* [http://barclayperkins.blogspot.de/2015/03/output-of-berliner-weisse-1885-1937.html?m=1 "Output of Berliner Weisse 1885 - 1937" by Ron Pattinson.]
 
* [http://barclayperkins.blogspot.de/2015/03/output-of-berliner-weisse-1885-1937.html?m=1 "Output of Berliner Weisse 1885 - 1937" by Ron Pattinson.]
* [barclayperkins.blogspot.com/2015/03/berliner-weissbier-breweries-in-1890s.html Berliner Weissebier in the 1890's" by Ron Pattison.]
+
* [http://barclayperkins.blogspot.com/2015/03/berliner-weissbier-breweries-in-1890s.html Berliner Weissebier in the 1890's" by Ron Pattison.]
 
* [http://barclayperkins.blogspot.com/2009/08/berliner-weisse-part-93.html Finding evidence that ''Brettanomyces'' was in Berliner Weisse, by Ron Pattinson.]
 
* [http://barclayperkins.blogspot.com/2009/08/berliner-weisse-part-93.html Finding evidence that ''Brettanomyces'' was in Berliner Weisse, by Ron Pattinson.]
 
* [http://barclayperkins.blogspot.co.uk/2015/03/berliner-weisse-in-uk.html "Berliner Weisse in the UK" by Ron Pattinson.]
 
* [http://barclayperkins.blogspot.co.uk/2015/03/berliner-weisse-in-uk.html "Berliner Weisse in the UK" by Ron Pattinson.]

Revision as of 17:36, 23 May 2017

Berliner Weisse is a top-fermented, bottle conditioned wheat beer made with both traditional warm-fermenting yeasts and Lactobacillus culture. Although many modern new world examples are kettle soured and not fermented with Brettanomyces, traditional Berliner Weisse mostly (if not always [1]) underwent a secondary fermentation with Brettanomyces [1][2][3][4]. Traditional examples are described as being generally very sour, clear wheat beers with good head retention [1][2]. Modern American examples are probably equally sour as historical versions, often have a rapidly vanishing head and a clear, pale golden straw-colored appearance, and often lack Brettanomyces character due to using a kettle souring process. The taste is refreshing, tart, sour and acidic, with a lemony-citric fruit sharpness and almost no hop bitterness.

Served in wide bulbous stemmed glasses, tourists in Berlin will often order on as a "Berliner Weisse mit Schuss: Himbeere" or "Berliner Weisse mit Schuss: Waldmeister". These are syrups that are added to make the sourness more palatable. Himbeere is raspberry (red) and Waldmeister is woodruff (green).

Typical average alcohol by volume (abv) range: 2.0-5.0%

Historical

Historical Berliner Weisse is thought to be consisted of barley malt and poorly modified wheat malt (for head retention) in a 1:3 or 1:4 ratio, although at least two German Berliner Weisse breweries in the 1970's used 100% barley malt (the word "weissbier" originally referred to both barley and wheat air-dried malt) [5]. Decoction mashing was also used, and was thought to impact better flavor than a single infusion mash. Hops were added to the mash tun during the mashing process or boiled with the decoction. Sometimes the boil was skipped (or boiled fora short time), and sometimes a traditional boil was used. The wort was not boiled because brewers thought that this was necessary for the cultures found in the mixed fermentation, however after the turn of the 20th century it was discovered that the microorganisms originated from surfaces in the brewery (although Mike Marcus from Chorlton Brewing Co has isolated L. casei that survived sparging the grain bed, indicating that some lactic acid bacteria can survive sparging temperatures and might have in fact had a souring impact on Berlier Weissbier that was not boiled [1]). The mixed cultures during primary fermentation were made up of S. cerevisiae and lactic acid bacteria in a 4:1 to 6:1 ratio, and was fermented between 25-30°C. The beer was fermented in open vessels until fully attenuated, and then carbonated with 12% krausen for a high, champagne-like carbonation. Top cropping was a regular practice. The beer would continue to develop in the bottle due to Brettanomyces and lactic acid bacteria. Due to the difficulty in controlling the level of acidity, and re-using yeast slurries that were under stress from mixed fermentation, methods such as Wort Souring were developed to pre-sour the wort with Lactobacillus first before pitching yeast [2].

Microbiology and Fermentation Profile

Editor's note: much of this information has been provided by Thomas Hübbe, and based on his master's thesis.

Information regarding the microbiology of historical Berlier Weisse is rare. A study from F. Schönfeld in 1938 describes the proportion of yeast cells to lactic acid bacteria cells through the first stages of fermentation. He describes the ratio as being 4:1 (yeast to lactic acid bacteria) at pitching time. After 18 hours, yeast saw growth, but after 40 hours the yeast population began to decline as attenuation completed. Another later study found that this ratio favors yeast growth, which hinders lactic acid bacteria growth and the production of lactic acid. Poor management of the microbes was blamed for not achieving enough acidity, and was described as being a common problem in Berliner Weisse, as well as not achieving enough carbonation in the bottle. Berliner Weisse producers developed many methods for trying to achieve a certain kind of flavor profile in Berliner Weisse, which has been compared to that of Lambic and Gueuze. Indeed, early study on Berliner Weisse by Methner in the 1980's discovered that Brettanomyces was a typical and important part of the flavor profile of Berliner Weisse [2]. The flavor of Berliner Weisse was described as being flowery and fruity, and a product of ester formation by Saccharomyces and Brettanomyces (see Brettanomyces esters) [2].

The most common lactic acid bacteria found in historical Berliner Weisse was Lactobacillus brevis, although other species such as L. parabrevis were also used. Brettanomyces species often found in Berliner Weisse includes B. bruxellensis and B. anomalus. S. cerevisiae (ale) strains were the primary fermenting yeast [2].

External History Resources

General Best Practices

  • Don't sour mash. It's too risky for off flavors
  • Limit CO2 and do not aerate before pitching
  • Pitch Lactobacillus between 90°F and 110°F depending on your Lactobacillus strain or blend for ~ 1-4 days (for more details see the Wort Souring page).
  • Create a 1 liter Lactobacillus starter for each 5 gallons at least 2 days in advance of brew day.
  • Pitch Brettanomyces after cooling down after Lactobacillus fermentation phase

Video Presentations

  • Perspective on Brewing Berliner Weisse Style Beer, Jess Caudill of Wyeast Labs, NHC 2012 Presentation.

Milk the Funk Berliner Weissbier Recipe

Berliner Weissbier
Description

The Milk The Funk Berliner is an 8 gallon recipe for a semi tart, fruity, wheat beer. This recipe is an 8 gallon, no boil recipe, and is made for a system with 73% efficiency. Please adjust the recipe to fit your system.

Stats
  • 1.035 OG
  • 1.004 FG
  • 4.0 ABV
  • 1 SRM
  • Mash 60min @ 145°f
Fermentables
Malt Weight  %
Floor-Malted Bohemian Wheat (DE) 3 lbs 30
Floor-Malted Bohemian Pilsner (DE) 7 lbs 70
Extract Version * Weight  %
Briess CBW® Bavarian Wheat Dried Malt Extract (or similar) 3 lbs 50
Briess CBW® Pilsen Wheat Dried Malt Extract (or similar) 3 lbs 50
* Note about the extract version: Devin Bell has also used 70% wheat DME to 30% pilsner DME and 100% wheat DME with good results. Briess CBW® Bavarian Wheat DME is 65% wheat and 35% barley.
Hops

No hops if possible. If hops have to be used for legal reasons (for commercial breweries, for example):

Hop Weight Time Use Alpha Acids
Golding (UK) 2 oz 10 min Mash 8 AAU
Yeast / Bacteria
Name Laboratory Product ID Starter Attenuation
Lactobacillus Blend (brevis, delbrueckii, and plantarum) * Omega Yeast Labs OYL-605 None N/A
Brett Sacc Trois White Labs WLP644 1 vial in 500 mL DME starter for 5-8 gallons 87.5
* If OYL-605 is not available, substitute it with a probiotic culture such as Goodbelly Mango or Swansons Plantarum. See Culturing From Probiotics [6].

Steps

  1. 1-2 days before brewing make a 1 liter starter of 1.040 wort, and add your vial of WLP644. Let it sit at room temperature until use. Also make 1 liter of 1.040 wort, and pour OYL-605 into the starter. Incubate 24-48 hours at room temperature to increase the cell count.
  2. Mash in at 145°f for 60 minutes; if hops have to be used, then make sure to add the hops to the mash.
  3. Sparge as normal.
  4. Bring the wort to a boil and then turn the heat off (no need to boil for more than a couple of minutes).
  5. Adjust PH ~4.2 to limit growth Clostridium butyricum and other potential off-flavor bacteria. Not necessary, but this is a best practice suggestion. See How to Pre-Acidify for instructions.
  6. Chill the wort down to 95°f, and transfer to a CO2 purged carboy or keg. Add the 1 liter of OYL-605 Lactobacillus Blend starter. Allow it to sour for 24 hours. No external heating is required.
  7. After the souring phase, chill the soured wort down to ~70°F and pitch WLP644 Trois (boiling to kill the Lactobacillus before adding the WLP644 Trois is optional; see kettle souring). You can aerate if you feel necessary. After 2 weeks a stable gravity should be reached.
  8. Rack or transfer off as normal to bottles or a keg.

See Also

Additional Articles on MTF Wiki

External Resources

References