Changes

Jump to: navigation, search

Brettanomyces

1,919 bytes removed, 17:10, 13 June 2020
moving glycerol
Unlike most genera of yeast, ''Brettanomyces'' has the characteristics of being very tolerant to harsh conditions, including high amounts of alcohol (up to 14.5-15% ABV <ref name="Crauwels1" /><ref name="Agnolucci_2017" />), a pH as low as 2 <ref>[http://www.winesandvines.com/template.cfm?section=news&content=141954 Wines and Vines. New Research on Role of Yeast in Winemaking; report on a presentation by David Mills and Lucy Joseph from UC Davis. 11/14/2014. Retrieved 08/16/2015.]</ref>, and environments with low nitrogen <ref name="Schifferdecker"></ref> and low sugar sources <ref name="Smith_2018">[https://www.sciencedirect.com/science/article/pii/S0740002017308249 The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Brendan D.Smith and Benoit Divol. 2018. DOI: https://doi.org/10.1016/j.fm.2017.12.011.]</ref>. It has been reported that some strains require a very low concentration of fermentable sugars (less than 300 mg/L) and nitrogen (less than 6 mg/L), which is less than most wines contain <ref name="Smith_2017">[https://www.sciencedirect.com/science/article/pii/S0740002017308249 The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Brendan D. Smith, Benoit Divol. 2017.]</ref>. Some strains are able to utilize ethanol, glycerol, acetic acid, and malic acid when no other sugar sources are available <ref name="Smith_2018" />. This capability allows ''Brettanomyces'' to survive in alcoholic beverages such as beer, wine, and cider. In alcoholic beverages, ''B. bruxellensis'' tends to lag after the primary fermentation with ''Saccharomyces''. It is believed that during this lag phase, ''B. bruxellensis'' adapts to the harsh conditions of the beverage (low pH, high concentrations of ethanol, and limited sugar/nitrogen sources). After this lag phase, ''B. bruxellensis'' can grow and survive when no other yeasts can. ''Brettanomyces'' is also more resistant to pH and temperature changes, and tolerant of environments limited in oxygen (although ''Brettanomyces'' prefers the availability of at least a little bit of oxygen). Scientifically, which specific nitrogen and carbon sources ''B. bruxellensis'' uses in these stressful environments has not received much research <ref name="smith_divol_2016"></ref>. [https://www.winesandvines.com/news/article/200000/New-Tools-to-Limit-Wine-Spoilage One study from Dr. Charles Edwards] found that a combination of keeping wine under 54°F (12.2°C) and alcohol at or above 14% resulted in a decline of ''B. bruxellensis'' populations for up to 100 days for two strains that were tested. The study found that neither of the strains grew well at 14% and stopped growth completely at 16% ABV in wine, but one strain grew better than the other at 15%, demonstrating the genetic diversity of ''Brettanomyces''. The researchers concluded that a combination of high ethanol and cold temperatures as well as sulfur dioxide, chitosan, and filtration could be used to control ''Brettanomyces'' in winemaking. ''Brettanomyces'' has been found to be able to grow at temperatures as low as 50°F (10°C) and as high as 95°F (35°C); see [[Brettanomyces#Carbohydrate_Metabolism_and_Fermentation_Temperature|fermentation temperature]] for more information <ref>[http://www.ajevonline.org/content/early/2017/01/05/ajev.2017.16102 Interactions between Storage Temperature and Ethanol that Affect Growth of Brettanomyces bruxellensis in Merlot Wine. Taylor A. Oswald, Charles G. Edwards. 2017.]</ref>.
 
''Brettanomyces'' is known for not producing much glycerol in beer. [https://en.wikipedia.org/wiki/Glycerol Glycerol] is a colorless, sweet-tasting, viscous liquid that is thought to be an important contributor to the mouthfeel of beer. Glycerol is produced as a stress response by a wide range of microbes, including ''S. cerevisiae'', and various species and strains of ''Debaryomyces'', ''Candida'', ''Lachancea'', and ''Zygosaccharomyces''. Despite not producing amounts of glycerol that are perceivable in beer, some strains of ''Brettanomyces bruxellensis'' actually produce glycerol which is stored inside of their cells as a response to osmotic stress. They can also uptake glycerol into their cells. Doing so allows the cells to survive osmotic pressure <ref>[https://www.sciencedirect.com/science/article/pii/S0740002013001251?via%3Dihub Osmotic stress response in the wine yeast Dekkera bruxellensis. Silvia Galafassi, Marco Toscano, Ileana Vigentin, Jure Piškur, Concetta Compagno. 2013.]</ref><ref>[https://academic.oup.com/femsle/advance-article-abstract/doi/10.1093/femsle/fny020/4828327?redirectedFrom=fulltext Osmotolerance of Dekkera bruxellensis and the role of two Stl glycerol-proton symporters. Jana Zemančíková, Michala Dušková, Hana Elicharová, Klára Papoušková, Hana Sychrová. 2018.]</ref>. It is currently not known how many strains are capable of producing glycerol internally, or if this amount of glycerol has any impact on perceived mouthfeel of a beer if a substantial amount of ''Brettanomyces'' cells eventually autolyze (see [https://www.facebook.com/groups/MilkTheFunk/permalink/2003626776332193/ this MTF thread]). The role of glycerol in creating mouthfeel is debatable in the wine world <ref>[https://www.winesandvines.com/features/article/68760 Tim Patterson. "Many Roads to Mouthfeel". Wines & Vines Magazine. Nov 2009. Retrieved 03/23/2018.]</ref>.
The genetic diversity of ''Brettanomyces'' is particularly wide. For example, one study that analyzed the whole genomes of 53 strains of ''B. bruxellensis'' found that the overall genetic diversity between different strains of ''B. bruxellensis'' was higher than strains of ''S. cerevisiae'' (however, the entire gene set, known as the ''pangenome'', of all the genes among all of the strains of '''B. bruxellensis'' is much smaller than the entire gene set of ''S. cerevisiae'') <ref name="Gounot_2019" />. Some studies have indicated that strains of ''B. bruxellensis'' have adapted to specific environments. For example, one study found that strains of ''B. bruxellensis'' isolated from wine had 20 genes involved in the metabolism of carbon and nitrogen, whereas strains isolated from beer did not. This indicated that ''B. bruxellensis'' strains living in wine have adapted to the harsher environment of wine <ref name="smith_divol_2016"></ref>. Another study found that one out of the two strains tested that were isolated from soda could not ferment maltose, and only strains isolated from wine were able to grow in wine and the beer/soda strains did not. The wine strains were also more resistant to sulfites, which are commonly used in the wine industry to prevent microbial contamination <ref name="Crauwels_2016" />. The whole genome sequencing of one strain of ''B. naardenensis'' found that it was missing the genes associated with nitrate utilization, indicating that it is not well adapted to survive in beer where nitrates are abundant due to hops <ref name="Tiukova_2019" />.

Navigation menu