Changes

Jump to: navigation, search

Brettanomyces

587 bytes added, 15:50, 17 May 2018
no edit summary
===Carbohydrate Metabolism and Fermentation Temperature===
''Brettanomyces'' is able to ferment a wide range of sugars. All strains can ferment glucose, and many strains can ferment sucrose, fructose, and maltose, although at a slower rate than glucose. Some strains can also ferment galactose, mannose, ethanol, acetic acid, malic acid, and glycerol, although there are some contradicting studies in science regarding the specifics, probably due to the genetic diversity of ''Brettanomyces'' species, and many previously published studies do not specify whether testing conditions were aerobic or anaerobic even though the availability of oxygen effects whether or not certain sugars can be fermented by a given strain of ''Brettanomyces'' <ref name="Steensels"></ref><ref name="smith_divol_2016"></ref><ref name="Smith_2018">[https://www.sciencedirect.com/science/article/pii/S0740002017308249 The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Brendan D.Smith and Benoit Divol. 2018. DOI: https://doi.org/10.1016/j.fm.2017.12.011.]</ref>. Acetic acid, glycerol, succinic acid, and ethanol are only consumed if oxygen is present <ref name="smith_divol_2016"></ref>. The addition of small amounts of O2 stimulates glucose fermentation, as well as H+ acceptors such as acetaldehyde, acetone, pyruvic acid and other carbonyl compounds <ref name="yakobson_introduction">[http://www.brettanomycesproject.com/dissertation/introduction/ Yakobson, Chad. The Brettanomyces Project. Introduction. Retrieved 8/11/2015.]</ref>. The presence of oxygen can allow some strains of ''Brettanomyces'' to utilize certain carbon sources. For example, several strains of ''B. bruxellensis'' can consume ethanol, glycerol, and acetic acid as food sources only when oxygen is present <ref name="Smith_2018" />.
''Brettanomyces'' strains may possess both alpha and beta-glucosidases. These enzymes allow ''Brettanomyces'' strains to break down a broad range of sugars, including long-chain carbohydrate molecules (polysaccharides, dextrins, and cellulose/cellobiose), and to liberate glycosidically bound sugars which are unfermentable to ''Saccharomyces'' yeasts. <ref name="Steensels"></ref><ref>[http://www.scribd.com/doc/277758178/Insight-into-the-Dekkera-anomala-YV396-genome Insight into the Dekkera anomala YV396 genome. Samuel Aeschlimann. Self-published on Eureka Brewing Blog. Spet 2015.]</ref>.

Navigation menu