Changes

Jump to: navigation, search

Pediococcus

4 bytes removed, 13:07, 15 March 2019
no edit summary
About 90% of sugar metabolized by ''Pediococcus'' produces both L- and D-lactic acid <ref name="Wade_2018" />. It does so by homolactic fermentation producing primarily lactic acid (same EMP pathway as [[Lactobacillus#Types_of_Metabolism|''Lactobacillus'' homolactic fermentation]]), although some species/strains can convert glycerol to lactic acid, acetic acid, acetoin, and CO2 under aerobic conditions (''P. damnosus'' is not in this category) <ref>[https://books.google.com/books?id=1b1CAgAAQBAJ&pg=RA2-PA1&lpg=RA2-PA1&dq=pediococcus+damnosus+homolactic&source=bl&ots=myI2alVB78&sig=cG-yWB4GuABQFEtqD2CAyKmU0TE&hl=en&sa=X&ved=0CEAQ6AEwBGoVChMI66C5593-xgIVCVKICh3Pcg7c#v=onepage&q=pediococcus%20damnosus%20homolactic&f=false Encyclopedia of Food Microbiology. Pediococcus. Carl A. Batt. Academic Press, Sep 28, 1999 .]</ref>. Some strains of ''P. pentosaceus'' can ferment five-chain sugars such as xylose to produce acetic acid and lactic acid. Some strains of ''P. halophilus'' (now reclassified as ''Tetragenococcus halophilis'') can convert citric acid into acetic acid and oxaloacetate (oxaloacetate is then further reduced to acetic acid and diacetyl, and the diacetyl is further reduced to acetoin, and 2,3-butanediol) by producing citrate lyase enzyme. This generally occurs at a slower rate than malolactic fermentation and depends on pH and temperature. However, all species in the ''Pediococcus'' genus are considered obligatory homofermentative because of the pathways that they use <ref>[http://aem.asm.org/content/81/20/7233.full A Genomic View of Lactobacilli and Pediococci Demonstrates that Phylogeny Matches Ecology and Physiology. Jinshui Zheng, Lifang Ruan, Ming Sun and Michael Gänzle. 2015.]</ref><ref name="Wade_2018" /><ref>[https://aem.asm.org/content/53/6/1257.short Citrate Metabolism by Pediococcus halophilus. Chiyuki Kanbe, Kinji Uchida. 1987.]</ref>.
===Malolactic FermentationDiacetyl===See the ''P. damnosus'' can produce high amounts of diacetyl during lactic acid production <ref>[http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2672.2000.00956.x/pdf Identification of pediococci by ribotyping. R. Satokari, T. Mattila-Sandholm and M.L. Suihko. Journal of Applied Microbiology 2000, 88, 260–265.]</ref><ref>[Cider#Microbes|Cider]http://mmbr.asm.org/content/77/2/157.full The Microbiology of Malting and Brewing. Nicholas A. Bokulicha, and Charles W. Bamforth. June 2013.] page</ref>.
==="Ropy" or "Sick" Beer===
===Bacteriocins===
Some strains of ''Pediococcus pentocaseus'' have been found to produce bacteriocins, which are toxins that are produced by the cells that inhibit the growth of other types of bacteria. For example, Bootleg Biology's "Sour Weapon" culture produces antimicrobials called bacteriocins or pediocins (see Bootleg Biology's [https://www.facebook.com/BootlegBiology/photos/a.148869931970401.1073741829.124634287727299/465185997005458/?type=1&theater Facebook post] regarding bacteriocins for more info). These can inhibit and kill similar species of bacteria like ''Lactobacillus'' and other ''Pediococcus'' species in mixed-culture fermentations. Bacteriocin production can be higher when ''Pediococcus pentocaseus'' is co-fermented with other bacteria than when it is fermented on its own <ref>[https://www.frontiersin.org/articles/10.3389/fmicb.2018.02952/abstract Enhanced Bacteriocin Production by Pediococcus pentosaceus 147 in Co-Culture with Lactobacillus plantarum LE27 on Cheese Whey Broth. Carolina Gutiérrez-Cortés, Héctor Suarez, Gustavo Buitrago, Luis A. Nero and Svetoslav D. Todorov. 2018. DOI: 10.3389/fmicb.2018.02952.]</ref>. A strain of ''Pediococcus pentocaseus'' was found to produce a "class II" enteriocin that inhibits the growth of ''E. coli'' and ''Staphylococcus aureus'' <ref>[https://www.sciencedirect.com/science/article/pii/S0882401017314559 Antibacterial activity of Lactobacillus plantarum isolated from Tibetan yaks. Lei Wang, Hui Zhang, Mujeeb Ur Rehman, Khalid Mehmood, Xiong Jiang, Mujahid Iqbal, Xiaole Tong, Xing Gao, Jiakui Li. 2017.]</ref>. ''P. damnosus'' also produces an antimicrobial compound called pediocin PD-1, which can inhibit several bacteria spp including ''O. oeni'' <ref>[http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2672.2001.01486.x/full Growth optimization of Pediococcus damnosus NCFB 1832 and the influence of pH and nutrients on the production of pediocin PD-1. H.A. Nel1, R. Bauer, E.J. Vandamme and L.M.T. Dicks. Jan 2002.]</ref><ref>[http://www.ncbi.nlm.nih.gov/pubmed/15878403 Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832. Bauer R, Chikindas ML, Dicks LM. May 2005.]</ref>.
 
See also:
* [[Lactobacillus#Bacteriocins|''Lactobacillus'' bacteriocins]].
===DiacetylMalolactic Fermentation===''P. damnosus'' can produce high amounts of diacetyl during lactic acid production <ref>See the [[http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2672.2000.00956.x/pdf Identification of pediococci by ribotyping. R. Satokari, T. Mattila-Sandholm and M.L. Suihko. Journal of Applied Microbiology 2000, 88, 260–265.Cider#Microbes|Cider]</ref><ref>[http://mmbr.asm.org/content/77/2/157.full The Microbiology of Malting and Brewing. Nicholas A. Bokulicha, and Charles W. Bamforth. June 2013.]</ref>page.
===Other Metabolites===

Navigation menu