Changes

Jump to: navigation, search

Aging and Storage

1 byte removed, 21:27, 20 June 2017
m
no edit summary
Polyphenols have an ambiguous role in the aging of beer. Flavonoids (for example catechin, which comes from hops and is a major source of polyphenols in beer), are antioxidants and protect more sensitive compounds such as isohumulones from oxidation by scavenging free radicals and binding with oxidative metals (iron, for example). However, they themselves can also be oxidized over time to possibly create off-flavors. In addition to their own oxidation, [https://en.wikipedia.org/wiki/Hydroxyl_radical hydroxyl radicals] that cause oxidation also react highly with ethanol, and therefore a portion may not react with polyphenols. After a lag period of 5 weeks in the bottle, it was found that levels of tannins actually increase. This is thought to be caused by smaller flavonoids reacting with acetaldehyde. Polyphenols were also oxidized into [https://en.wikipedia.org/wiki/Quinone quinones], which are a stepping stone in the reaction that causes [https://en.wikipedia.org/wiki/Food_browning oxidative food browning]. The use of polyphenols during mashing and boiling has been shown to decrease trans-2-nonenal (cardboard flavor) and trans-2-nonenal that is protected from fermentation by being bound to proteins (see [[Aging_and_Storage#Tannic_Acid|Tannic Acid]] below). In two studies, there appeared to be no significant effect on free radical formation by polyphenols, probably due to the fact that they readily react with ethanol <ref name="Callemien_2010" />.
Higher temperatures increase the rate of oxidized polyphenols. In one study on aged lagers, 6.5% of the polyphenols were oxidized after 5 days at 40°C/104°F, but only 0.6% of the poly[phenols polyphenols were oxidized after 9 months at 20°C/68°F <ref name="Callemien_2010" />.
Polyphenols generally contribute to an astringent taste in beer, and this can be intensified at a lower pH (4-4.2). Oxidation of polyphenols might make them more astringent depending on the degree of "polymerization degree" (see [https://winemakermag.com/1045-tannin-chemistry-techniques this article]), although residual sugars reduce their astringency. Sensory analysis of lagers has shown that aged lagers became less bitter and more astringent over time (especially at a higher temperature or a higher pH), probably due to a decrease in IBU's and bitter polyphenols like catechin, and an increase in oxidized polyphenols <ref name="Callemien_2010" />.

Navigation menu