Changes

Jump to: navigation, search

Glycosides

451 bytes added, 17:38, 5 August 2018
added section "Determining HCN Potential"
Upon learning about cyanogenic glycosides, brewers often question the toxicity of cherry pits or apricot kernels in beer. Cherry pits have traditionally been used in [[lambic]] kriek beers in Belgium. However, the dilution of HCN from cherry pits in beer results in benign levels. Assuming full breakdown of these glycosides, and that none of the HCN boils off (25.6°C boiling temperature), levels of HCN introduced from cherry pits are too low to cause harm to adult humans. The EU regulates that alcoholic beverages cannot exceed 1 mg of HCN per ABV percentage (v/v%) per liter <ref>[http://ec.europa.eu/food/fs/sfp/addit_flavor/flav09_en.pdf COUNCIL DIRECTIVE of 22 June 1988 on the approximation of the laws of the Member States relating to flavourings for use in foodstuffs and to source materials for their production (88/388/EEC). The European Food Commission, Food Safety. Retrieved 08/26/2016.]</ref>. Luk Daenen, a glycoside researcher, calculated that for a 4% ABV alcohol beer, 4 mg of HCN per liter is allowed. With 200 grams of cherries per liter, and the pits being 10 - 14 grams of that weight, there is 22 - 30.8 mg amygdalin per liter of beer. Around 6% of the weight of amygdalin is converted into HCN. Assuming maximum extraction of HCN from the amygdalin glycoside, which is unlikely because the pits are not ground up when used in beer, this equates to 1.3 - 1.82 mg of HCN per liter of beer. This amount is less than the 4 mg of HCN per liter that the EU regulation states. Considering that ~42 mg of HCN is required to kill a person that weighs 70 kilograms (154 pounds), that person would need to drink around 23 liters of beer <ref name="daenen">[https://www.uclouvain.be/cps/ucl/doc/inbr/documents/presentation-luk-daenen.pdf "Use of beta-glucosidase activity for flavour enhancement in specialty beers," slideshow by Luk Daenen. 2012. Retrieved 08/26/2016.]</ref>. Considering that 350 mL of pure alcohol would kill a 70 kilogram adult <ref>[http://www.alcohol.org.nz/alcohol-its-effects/health-effects/alcohol-poisoning "Alcohol Poisoning". NZ Health Promotion Agency. Retrieved 08/26/2016.]</ref>, the amount of 4% ABV beer required to kill a 70 kg adult from alcohol poisoning is around 8.75 liters. Alcohol would kill such a person far before cyanide poisoning would become a concern. In general, the potential cyanide in most plants will become too dilute to have any health problems when added to beer in normal amounts, however there might still be plants that are extremely high in HCN content that should be avoided in beer (see the table below). If there is a concern that an ingredient containing potentially high levels of HCN could reach unhealthy levels in beer, the beer should be sent for lab analysis so that the HCN levels can be determined before being consumed.
Some cyanogenic foods can have their cyanogenic glycosides reduced by cooking them at 230°C for 15 minutes (flaxseed, for example) <ref name="Chaouali"></ref><ref name="flax"></ref>, however some amygdalin based cyanogenic plants may have their amygdalin content reduced to about 25% by cooking alone (apricot seeds, for example; only the cooking temperature of 100°C was tested <ref name="tuncel"></ref>). Fermentation by certain species of microbes can have a greater effect on reducing amygdalin to HCN than cooking alone. Microbes that have been shown to break down amygdalin include some species of lactic acid bacteria including ''Lactobacillus plantarum'', and fungi such as ''Endomyces fibuliger'', ''Pichia etchellsii'', and ''Hanseniaspora valbyensis''. Some strains of ''Brettanomyces'' that have high beta-glucosidase activity might be able to break down amygdalin by around 64%, and some strains of ''S. cerevisiae'' might be able to break down up to around 10% of amygdalin, but this needs to be verified by science. Once the amygdalin is broken down into HCN, the HCN can then be volatilized off by cooking in a ventilated space <ref>[http://link.springer.com/article/10.1007/BF00151870 Simple screening procedure for microorganisms to degrade amygdalin. L. Brimer, G. Tunçel, M. J. R. Nout. 1993.]</ref><ref>[http://www.ncbi.nlm.nih.gov/pubmed/7710917 Microbial degradation of amygdalin of bitter apricot seeds (Prunus armeniaca). Nout MJ, Tunçel G, Brimer L. 1995.]</ref><ref name="Daenen1"></ref>. In normal brewing procedures, however, the beer is not cooked nor ventilated, so any HCN that is produced by the breakdown of cyanogenic glycosides should be presumed to remain in the beer.  ====Determining HCN Potential====The [http://nordicfoodlab.org/blog/2013/8/hydrogen-cyanide The DIY picric acid test for HCN] could help in measuring HCN content in beer. Make sure that this test is performed against the finished beer after any glycosides would be broken down. Toxicology labs, if available, should be able to offer services that measure HCN in beer. The following table also lists potential HCN content for various food items.
{| class="wikitable sortable"

Navigation menu