Changes

Jump to: navigation, search

Pediococcus

1,195 bytes added, 15:05, 18 March 2019
no edit summary
Some strains of ''P. damnosus'' can cause a beer (or wine) to go "ropy", also known as "sick" by [[lambic]] brewers (or more specifically as the fat sickness, “la maladie de la graisse” in French <ref>[https://beerbybart.com/2011/04/03/true-lambic-jean-van-roy-cantillon-sick-beer/ True Lambic: Sick beers and the magic of Cantillon. Beer By Bart blog. Gail Ann Williams. 04/03/2011. Retrieved 04/23/2016.]</ref>). Reportedly, ropiness in beer that also has ''Brettanomyces'' (which is traditionally credited with breaking down the ropiness after a period of rest) usually lasts anywhere from 1 week to 3 months, although fewer reports claim that it has lasted as long as 7 months (see reference for different experiences of brewers) <ref name="ropy_time">[https://www.facebook.com/groups/MilkTheFunk/permalink/1132030550158491/ Poll on Milk The Funk regarding how long ropy beer has been observed. 08/20/2015.]</ref>. Some species of ''Pediococcus'' and other lactic acid bacteria have been reported to also be able to break down ropiness <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1670311836330357/?comment_id=1670331339661740&comment_tracking=%7B%22tn%22%3A%22R0%22%7D Matt Humbard and Joe Idoni. Milk The Funk Facebook group. 04/29/2017.]</ref>.
This "ropiness" is caused by production of exopolysaccharides (EPS) in the form of β-glucans (beta glucans) by some strains ''Pediococcus'' and some other lactic acid bacteria species. The β-glucans are made up of beta 1, 3 linkages and beta 1, 2 branches composed of single units <ref name="Wade_2018" />. A small amount (20-30 mg/L <ref name="Wade_2018" />) of β-glucan is adequate enough to affect the visible viscosity of beer or wine. The gene known as "dps" has been identified with the production of β-glucan/EPS in ''P. damnosus'', and the gene "gtf" in ''P. claussenii'' <ref name="Snauwaert"></ref>. Not all strains of ''P. damnosus'' express the gene, and only ones that do will cause a beer to go ropy. Although it is not needed to survive in beer, EPS production is probably has importance in biofilm production <ref>[http://cat.inist.fr/?aModele=afficheN&cpsidt=23890699 Ethanol tolerance of lactic acid bacteria, including relevance of the exopolysaccharide gene gtf. Pittet V, Morrow K, Ziola B. 2011.]</ref>, and ''Pediococci'' that are ropy have been found to be more acid, alcohol, and SO2 tolerant than other ''Pediococci''. The thickness of the ropiness is increased with the presence of malic acid <ref name="ESP"></ref>. While strains of ''P. damnosus'' and ''P. parvulus'' are the ''Pediococcus'' species most associated with ropiness, some strains of ''P. pentosaceus'' have also been found to produce EPS <ref name="Wade_2018" />.
One study showed that the production of β-glucan coincided with the end of the growth phase of ''Pediococcus''. While small amounts of β-glucan were produced during growth, after 2 days of growth, β-glucan production increased as growth slowed. β-glucan production stopped when growth stopped. This study showed that β-glucan production is linked to ''Pediococcous'' growth, producing more towards the end of growth. This would explain why beer containing ''Pediococcus'' often goes ropy shortly after naturally carbonating in the bottle. This study found that other variables were not factors in the production of β-glucan, such differing levels of alcohol (although alcohol interacts with the β-glucan in a way that makes the viscosity seem thicker). The study also found that the lack of agitation increased the β-glucan production (wine makers will often agitate or aerate ropy wine to cure the wine from ropiness). A higher initial pH encourages higher growth (5.5+), which increases β-glucan production. A lower initial pH (3.5), decreases growth and β-glucan production. A higher concentration of glucose increased growth and β-glucan production. Glucose is needed for β-glucan production. While fructose alone is mostly insufficient to produce ropiness, a combination of glucose and fructose was slightly more efficient than glucose alone <ref name="ESP"></ref>.
Temperature and nitrogen levels also affect how much EPS is produced. One study found that at 12°C both growth and EPS production was much slower than at 25°C. After 29 days in agar media, the EPS in the 12°C samples tended to reach or slightly exceed the levels in the 25°C samples, which developed equivilant levels of EPS (or slightly less) within 7-13 days. Nitrogen levels also play a significant role, according to this study, particularly at lower fermentation temperatures. At 12°C, nitrogen was more important for the formation of EPS than glucose (although glucose was found to be the most important factor in EPS development overall, which is in agreement with the previously sited study). At 25°C nitrogen levels played a significant role in producing EPS, however less so than glucose levels. In general though, higher availability of nitrogen complimented higher levels of glucose to produce more EPS (and faster/higher cell growth) <ref>[https://www.sciencedirect.com/science/article/pii/S0168160503000606 Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidefined medium under different growth conditions. Maite Dueñas, Arantza Munduate, Aidé Perea, Ana Irastorza. 2003.]</ref>. Stress in the environment such as ethanol and SO<sub>2</sub> has also been shown to induce EPS production; and a lack of available glucose has been associated with eliminating the production of EPS (e.g. malolactic fermentation by ''Pediococcus'' in wine tends not to produce EPS, perhaps due to the lack of glucose in the environment) <ref name="Wade_2018" />.
The presence of beta-glucans from barley have been observed to extend both the growth and the viability of ''Lactobacillus'' species in probiotics, indicating that ropiness might be a stress response <ref>[http://www.mdpi.com/1422-0067/15/2/3025/htm Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria. Mattia P. Arena, Graziano Caggianiello, Daniela Fiocco, Pasquale Russo, Michele Torelli, Giuseppe Spano, and Vittorio Capozzi. 2014.]</ref><ref>[http://www.mdpi.com/1422-0067/13/5/6026/htm Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms. Pasquale Russo, Paloma López, Vittorio Capozzi, Pilar Fernández de Palencia, María Teresa Dueñas, Giuseppe Spano, and Daniela Fiocco. 2012.]</ref>. One study looked at this effect in beta-glucans produced by ''Pediococcus parvulus'' and found that ''L. plantarum'' had a longer viability in a fermented medium with no additional food source when that medium was first fermented with ''P. parvulus'' and EPS was produced. The ''L. plantarum'' strain that was tested did not ferment the beta-glucans. This suggests that there is an interspecies simbiotic relationship between lactic acid bacteria that produce EPS and those that don't, and when EPS is produced (beta-glucans are present) the bacteria survive longer. The study also observed that more EPS was produced in an oat based wort and a rice based wort, while no EPS was produced in a barley based wort, suggesting that different food sources influence whether or not EPS is produced <ref>[http://www.mdpi.com/1422-0067/18/7/1588/htm In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus. Adrián Pérez-Ramos, María Luz Mohedano, Paloma López, Giuseppe Spano, Daniela Fiocco, Pasquale Russo, and Vittorio Capozzi. 2017.]</ref>. No studies have been done on Pittet et al. (2011) found that the growth or survivability presence of the EPS genes in lactic acid bacteria in did not correspond with the present of EPS in ability to survive beer-level ethanol levels or higher, which is led to the hypothesis that perhaps EPS provides LAB a more harsh environment than what was tested way to assist in these studiesthe formation of [[Quality_Assurance#Biofilms|biofilm]], although this has yet to be demonstrated scientifically <ref>[https://www.tandfonline.com/doi/abs/10.1094/ASBCJ-2011-0124-01 Ethanol Tolerance of Lactic Acid Bacteria, Including Relevance of the Exopolysaccharide Gene Gtf. Vanessa Pittet and Kendra Morrow and Barry Ziola. 2011. DOI: https://doi.org/10.1094/ASBCJ-2011-0124-01.]</ref>.
It has been observed that ''Lactobacillus'' species can produce EPS (''Lactococcus lactis'', ''Lactobacillus delbrueckii'', ''Lactobacillus casei'', and ''Lactobacillus helveticus'') <ref name="ESP"></ref>. Some species of yeast can also produce EPS, including ''Candida'', ''Cryptococcus'', ''Debaryomyces'', ''Lipomyces'', ''Pichia'' <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2465980936763439/ Zach Taggart. Milk the Funk Facebook group post on EPS from yeast. 01/16/2019.]</ref>, ''Pseudozyma'', ''Rhodotorula'' and ''Sporobolomyces'' <ref name="Gientka_2015">[https://www.researchgate.net/publication/283498621_Exopolysaccharides_from_yeast_insight_into_optimal_conditions_for_biosynthesis_chemical_composition_and_functional_properties_-_review?fbclid=IwAR1X6Y0rnquoF6SD-eH9m6EWpLIefgZJFUJK51NJYBooJWngxEVS2aR3PKE Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties - review. Iwona Gientka, Stanisław Błażejak, Stanisław Błażejak, Lidia Stasiak, Lidia Stasiak, Anna Chlebowska-Śmigiel, Anna Chlebowska-Śmigiel. 2015.]</ref>

Navigation menu