615
edits
Changes
m
no edit summary
==Defining ''Spontaneous Fermentation''==
(in progress)
In the most romanticized view of the term spontaneous fermentation, the microbes which inoculate the wort in the coolship are sourced exclusively from the ambient environment outside the brewery. Scientific publications have suggested that in the case of some producers, these microbes may be resident in the brewhouse <refname="Bokulic et al., 2012">[http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035507/ Bokulich et al, 2012]</ref>. This is supported by the reluctance of lambic brewers to alter their facilities (remodeling, moving, painting, etc.) and the spraying of lambic on the walls of new buildings <ref>[https://www.facebook.com/permalink.php?story_fbid=888263374558973&id=110627652322553/ Cantillon Facebook post 5-February-2015]</ref> <ref>[http://www.latisimports.com/assets/uploads/2009/11/MBA_Boon_October_Article.pdf/ Modern Brewery Age Weekly 23-October-2009 Article by Peter Reid with Frank Boon, accessed 7-May-2015]</ref>. The microbes responsible for spontaneous fermentation may also be derived from the oak barrels and/or foedres which are often used to hold the fermenting beer <refname="Spitaels et al., 2015">[http://www.sciencedirect.com/science/article/pii/S074000201500012X/ Spitaels et al., 2015]</ref>. Many Belgian lambic producers thoroughly clean their barrels using hot water/steam, mechanical agitation(--add Cantillon ref--), and/or burning sulfur <ref> Conversation between Dave Janssen and Steven Sonck of [[De Cam]], winter 2014</ref>; however even the most rigorous cleaning likely does not likely fully sterilize the barrels. In the case of lambic brewers the microbes resident in barrels are spontaneous in origin, having been derived from years to decades of use in the brewery without any exposure to pitched cultures. The and the barrels may serve as a concentrating mechanism for the desired cultures.
A spontaneous fermentation may also be achieved by inoculating small amounts of wort and growing up the spontaneously inoculated microbes to check for suitability. This is common in homebrew production <ref> [http://www.themadfermentationist.com/2011/04/ambient-spontaneous-yeast-starters.html The Mad Fermentationist Spontaneous Starters, accessed 7-May-2015]</ref> and allows for screening of the microbes to remove wild cultures with aggressive off flavors and/or mold. This is not unlike the potential of used oak barrels, where well performing barrels may be kept to inoculate subsequent batches while poorly performing barrels may be discarded and removed from the brewery. As different microbes survive and thrive in different environments, barrels or pre-screened and grown starters cannot will probably not provide a complete profile of the microbes present in traditional spontaneous fermentation beers. However a combination of a coolship to inoculate the wort with ambient/brewhouse resident microbes combined with a form of pre-screening such as barrel re-use and/or spontaneous starters may provide the full microbiota present in traditional spontaneously fermented products. For the purposes of this page, beers receiving additions isolated cultures or bottle dregs are not treated as spontaneous and are discussed under [[Mixed Fermentation|mixed-culture fermentation]].
==Brewing Methods==
==Microbial Succession During Fermentation==
Scientific research in Belgium and the US has shown a regular general pattern to the microbial succession of spontaneous fermentation beer. <ref name="Van Oevelen et al., 1977">[http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.1977.tb03825.x/abstract/ Van Oevelen et al., 1977]</ref> <ref>[http://journals.plos.org/plosone/article?idname=10.1371/journal.pone.0035507/ Bokulich "Bokulic et al., 2014]<2012" /ref> <ref>[http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095384#pone-0095384-g004/ Spitaels et al., 2014]</ref> <ref name="Spitaels et al., 2015">[http://www.sciencedirect.com/science/article/pii/S074000201500012X/ Spitaels et al. 2015]</ref>. The first stage, which lasts for approximately 1 month <ref name="Van Oevelen et al., 1977" /> <ref name="Martens et al., 1992">[http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.1992.tb01126.x/abstract/ Martens et al., 1992]</ref>, is dominated by ''enterobacteria''. Though ''enterobacteria'' contribute little in terms of gravity drop over the first month of fermentation, they may contribute aroma and flavor compounds and precursors during the initial stages of spontaneous fermentation <ref name="Martens et al., 1992" />. Acidifying the wort to pH = 4 before cooling and exposing to ambient microbes in a coolship can eliminate the ''enterobacteria'' phase of spontaneous fermentation <ref name="Spitaels et al., 2015" />.
The second stage of spontaneous fermentation is dominated by ''Saccharomyces sp.'' (predominantly ''S. cerevisiae'' and ''S. bayanus''). Most of the attenuation is accomplished during this stage, which lasts approximately 3-4 months <ref name="Van Oevelen et al., 1977" />.