13,691
edits
Changes
no edit summary
====Second Stage: Ethanol Production====
The second stage of spontaneous fermentation is dominated by ''Saccharomyces'' species (predominantly ''S. cerevisiae'', ''S. bayanus'', ''S. kudriavzevii'', and ''S. pastorianus'', the latter two species often being present towards the end of this phase in lambic due to the colder cellar temperatures during the winter season when lambic is made). ''Hanseniaspora uvarum'' has also been reported in some but not all lambic fermentations playing a major role in starting the second stage of spontaneous fermentation, which is characterized by ethanol production<ref name="Roosa_2024"/><ref name="Bongaerts_2021" />. Most of the attenuation is accomplished during this stage with the depletion of monosaccharides, disaccharides, and trisaccharides consumed in that order (glucose/fructose is consumed first by the ''Saccharomyces'' species, and then maltose/maltotriose are gradually depleted until they are gone by the end of the second stage). ''S. kudriavzevii'' is capable of breaking down maltooligosaccharides (dextrins) through alpha-glucosidase enzyme production, and therefore can out-compete ''S. cerevisiae'' in the later portion of the second stage <ref name="Bongaerts_2021" />.
Ethanol, methyl-1-butanol, and succinic acid are the main compounds produced during this stage for wort that has been pre-acidified. This stage lasts approximately 3-4 months. One study also found populations of ''Kazachsania'' yeast species and ''Cellulosimicrobium'' yeast species early on in the second stage <ref name="Roos_2018_2" /><ref name="Bongaerts_2021" />. In addition to the bulk of the overall ethanol production, this phase also sees the production of higher alcohols and the synthesis of esters, especially isoamyl acetate, as well as glycerol, caprylic acid, and capric acid <ref name="Van Oevelen et al., 1977" /><ref name="Roos_2018" />. It has been reported by some brewers that this stage might begin as early as 3-14 days and corresponds with a drop in pH below that of regular beer, indicating that the first stage for some spontaneous fermentations might be shorter and faster than reported in the other literature <ref>[http://www.spontanmanc.co.uk/?p=66 Zach Taylor of Chorlton Brewing Co. "The Lab Work Begins". Spontanmanc blog. 08/01/2018. Retrieved 08/29/2018.]</ref>. MTF members (both homebrewers and professionals) have observed yeast fermentation activity typically at 3-7 days <ref>[https://www.facebook.com/events/666424196868756/ Various MTF members. Milk the Funk - Collaboration Brew #3: Spontaneous. 05/01/2017. Retrieved 08/29/2018.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1571139996247542/?comment_id=1571597289535146 Raf Soef, James Howat, Levi Funk. Milk The Funk Facebook thread on how long it takes for yeast to start fermenting in a spontaneous fermentation. 2017.]</ref>. However, these reports are anecdotal based on visual fermentation and microbe analysis was not done in many cases. De Roos et al. (2018) reported that for wort that is pre-acidified to a pH of 4.5, and after an initial drop in pH to 3.8 by enterobacterial and acetic acid bacteria, the pH rose to 4.0 during the secondary fermentation phase, indicating that the yeast consumed some of the organic acids that were produced during the initial enterobacteria phase <ref name="Roos_2018_2" />.
====Third Stage: Acidification====