Changes

Jump to: navigation, search

Hops

2,478 bytes added, 16:06, 28 December 2016
no edit summary
There are three primary classes of '''oils''' in hops: hydrocarbons (~64% of the total oils), oxygenated compounds (~35% of the total oils), and sulfur compounds (≤1% of the total oils)<ref name="Shellhammer, Vollmer and Sharp, CBC 2015"> Shellhammer, Vollmer, and Sharp. Oral presentation at the Craft Brewers Conference, 2015. </ref>. Individual flavor and aroma active oils each have different thresholds, solubilities, and volatilities, and individual oils can have synergistic interactions with each other. The chemistry of hop oil taste perception is therefore very complicated and overall is not well understood. While sulfur compounds make up only a very small fraction of the total oils, they have a significant impact on hop flavor<ref name="Shellhammer, Vollmer and Sharp, CBC 2015"/>.
Hydrocarbons, specifically terpenoids, make up the majority of hop oil. The majority of these terpenoids are myrcene, which characterizes the aroma of hops (although this compound does not carry over well into beer because it is hydrophobic), caryophyllene, and humulene. Most of these compounds are evaporated off by the brewing process, and others are metabolized into different compounds during fermentation <ref name="Kishimoto_2008">[Comparison of 4-Mercapto-4-methylpentan-2-one Contents in Hop Cultivars from Different Growing Regions. Toru Kishimoto, Minoru Kobayashi, Nana Yako, Ayako Iida and Akira Wanikawa. 2008.]</ref>. Linalool and geraniol have been identified as the major compounds that contribute to beer flavor in hop varieties such as Cascade <ref name==Other Compounds==="Kiyoshi_2009" />.
Hops also contain Hop oil contains a small percentage (~1%) of sulfur related compounds (thiols, sulfides, polysulfides, thioesters, thiopenes, and terpene derivatives). Although these levels are low, the flavor thresholds for these compounds also tends to be very low. Hydrogen sulfide can be released from these compounds during fermentation. Hops that have been treated with sulfur to prevent mildew growth (an older process that is generally no longer used) can result in increased sulfur compound such as sulfuric terpenes, and lend a garlic-like aroma in beer. Few sulfur compounds survive boiling, however late hopping and dry hopping preserves more sulfur compounds which can survive into the beer. Fermentation generally volatilizes sulfur compounds, and some are volatilizes out almost completely <ref name="Peppard_1981">[http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.1981.tb04054.x/abstract VOLATILE ORGANOSULPHUR COMPOUNDS IN HOPS AND HOP OILS: A REVIEW. T.L. Peppard. 1981.]</ref>.
'''[https://en.wikipedia.org/wiki/Thioester Thioesters]''' are derived from an acid and a thiol. These include S-methyl hexanethioate and S-methyl heptanethioate and derivatives of these, which impart cabbagy, sulfury, and soapy flavors, and their low flavor threshold can have an impact on finished beer. Sulfides and polysulfides found in hops includes [[Dimethyl _Sulfide|dimethyl sulfide (DMS)]], dimethyl disulfide (DMSD), dimethyl trisulfide (DMST; cooked vegetable, onion). DMTS has been found in wide ranges in hops, from a few ppm to 1450 ppm, and has a very low flavor threshold (1 ppb). These compounds are volatilized during brewing and fermentation, and are generally only found in beers that are dry hopped <ref name="Peppard_1981" />.
 
Other thiol (organic sulfur) based compounds contribute to a pleasant aroma and flavor in beer, such as 4-mercapto-4-methyl-pentan-2-one (4MMP), which is found in high quantities in North American varieties such as Simcoe (highest amount), Summit, Apollo, Topaz, and Cascade hops, as well as varieties from Australia and New Zealand. The character of black currant, muscat-like aroma in beer brewed with these hops has been attributed to 4MMP. It is thought that 4MMP is only found in North American, Australian, and New Zealand hops and not European hops because European hops are often treated with copper ions, which has been shown to decrease the amount of 4MMP in hops. Interestingly, beers brewed with these hops showed a 33% increase in 4MMP after fermentation; it is thought that the precursor cysteine conjugate is responsible for the increase in 4MMP during fermentation <ref name="Kishimoto_2008" />. The volatile thiols 3-sulfanyl-4-methylpentan-1-ol (3S4MP), and 3-sulfanyl-4-methylpentyl acetate (3S4MPA) have been identified in Nelson Sauvin hops as the compounds that give these hops their "wine-like, Sauvignon Blanc" character. Similar thiols have been described as the major contributors to the aroma of Sauvignon Blanc wines themselves: 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanyl-
pentan-2-one (4MSP) <ref name="Kiyoshi_2009">[http://pubs.acs.org/doi/pdf/10.1021/jf8034622 Identification and Characteristics of New Volatile Thiols Derived from the Hop (Humulus luplus L.) Cultivar Nelson Sauvin. Kiyoshi Takoi, Marie Degueil, Svitlana Shinkaruk, Cécile Thibon, Katsuaki Maeda, Kazutoshi Ito, Bernard Bennetau, Denis Dubourdieu and Takatoshi Tominaga. 2009.</ref>.
==Antimicrobial Properties==

Navigation menu