Changes

Jump to: navigation, search

Brettanomyces

352 bytes added, 14:50, 9 February 2017
m
no edit summary
===Carbohydrate Metabolism===
''Brettanomyces'' is able to ferment a wide range of sugars. All strains can ferment glucose, and many strains can ferment sucrose, fructose, and maltose, although at a slower rate than glucose. Some strains can also ferment galactose, mannose, ethanol, acetic acid, and glycerol, although there are some contradicting studies in science regarding the specifics, and many previously published studies do not specify whether testing conditions were aerobic or anaerobic even though the available of oxygen effects whether or not certain sugars can be fermented by a given strain of ''Brettanomyces'' <ref name="Steensels"></ref><ref name="smith_divol_2016"></ref>. Acetic acid, glycerol, succinic acid, and ethanol are only consumed if oxygen is present <ref name="smith_divol_2016"></ref>. The addition of small amounts of O2 stimulates glucose fermentation, as well as H+ acceptors such as acetaldehyde, acetone, pyruvic acid and other carbonyl compounds <ref name="yakobson_introduction">[http://www.brettanomycesproject.com/dissertation/introduction/ Yakobson, Chad. The Brettanomyces Project. Introduction. Retrieved 8/11/2015.]</ref>.
''Brettanomyces'' strains may possess both alpha and beta glucosidases. These enzymes allow ''Brettanomyces'' strains to break down a broad range of sugars, including longer chain carbohydrate molecules (polysaccharides, dextrins, and cellulose/cellobiose), and to liberate glycosidically bound sugars which are unfermentable to ''Saccharomyces'' yeasts. <ref name="Steensels"></ref><ref>[http://www.scribd.com/doc/277758178/Insight-into-the-Dekkera-anomala-YV396-genome Insight into the Dekkera anomala YV396 genome. Samuel Aeschlimann. Self published on Eureka Brewing Blog. Spet 2015.]</ref>.

Navigation menu