Changes

Jump to: navigation, search

Brettanomyces

66 bytes added, 11:25, 30 August 2016
m
updated Acetic acid a little bit.
====Acid Production====
In the presence of oxygen, ''Brettanomyces'' strains are capable of producing produce acetic acidas a byproduct of glucose fermentation. Depending on the brewer's palate and the degree of acetic production, this can be a desirable or undesirable trait. The degree of acetic acid production varies among different ''Brettanomyces'' strains, and is limited by limiting oxygen exposure. Acetic acid produced by ''Brettanomyces'' may also be used in the synthesis of [[Secondary metabolites|acetate esters]] such as ethyl acetate. ''Brettanomyces'' has been shown to produce enough fatty acids in anaerobic fermentation to drop the pH to 4.0, which can also be esterified (see the ester table above) <ref name="yakobson1"></ref>. Many of these acids can have an unpleasant rancid odor and/or taste, which may be noticeable in young ''Brettanomyces'' beers before these acids are esterified.
Michael Lentz and Chad Harris tested whether or not the hydroxycinnamic acids (HCAs) inhibit the growth of ''Brettanomyces''. They found that high levels of hydroxycinnamic acids (HCAs), which includes ferulic acid, p-coumaric acid, and caffeic acid, do inhibit the growth of ''Brettanomyces''. Ferulic acid is the strongest inhibitor of these three HCAs with most strains tested not being able to grow in wort that contained 12 mM (millimolar) of ferulic acid. Caffeic acid was generally shown to be the weakest inhibitor of the three HCAs tested. Levels of 25 mM p-courmaric acid inhibited growth of all strains tested, and levels of 30 mM of caffeic acid inhibited all strains tested. The ability of HCAs to inhibit growth is different from strain to strain of ''Brettanomyces''. Inhibition does not appear to be species dependent. Some strains display a lag time and grow more slowly in the presence of high amounts of HCA's, but still eventually achieve maximum growth compared to if they were grown without exposure to HCAs, while others lag and then stop growing before reaching maximum growth <ref name="Lentz"></ref>.

Navigation menu