Changes

Jump to: navigation, search

Wort Souring

41,928 bytes added, 11 March
Ropiness
'''Wort Souring''' (formally "sour worting") is a the process in which of acidifying wort by inoculating it with lactic acid bacteria (usually ''[[Lactobacillus]]''to ferment and produce lactic acid before inoculating with yeast to perform the primary alcoholic fermentation. While non-sour beer falls in the range of 3.8-4.6 pH, although there are a final pH between 3.0 and 3.7 is the general target range for the soured wort and also ''the finished sour beer (note that [[PediococcusTitratable Acidity]]'' cultures available that work well is more accurate for this techniquemeasuring perceived sourness) . This is given a "head start", pitched before the yeast so that it will be able to produce significant amounts of lactic acid before the ''Saccharomyces'' completes the main fermentation. There broadly defined technique and there are several many variations on souring wort, including . These include [[Mixed Fermentation|mixed fermentation]] methods such as souring in the primary fermenter, souring in for a secondary vesselshort time period before adding yeast, or even pre-boil acidification such as souring in the boil kettle itselfwith a pure culture of lactic acid bacteria and then boiling to pasteurize the sour wort before yeast is added ('''[[Wort_Souring#Souring_in_the_Boiler_.28Kettle_Sour.29|kettle souring]]'''). There are also various methods of inoculating the wort with ''Lactobacillus''<ref>[https://www.researchgate. Finallynet/publication/341353855_The_power_of_sour_-_A_review_Old_traditions_new_opportunities Bossaert, Sofie & Crauwels, Sam & De Rouck, Gert & Lievens, the brewer has the option of pasteurizing the wort by heating it to kill the ''Lactobacillus'' before adding the yeast for the main fermentationBart. Some creative brewers have applied wort souring techniques to longer aged [[Mixed Fermentation]] beers and barrel aged beers(2019). Many brewers prefer this process over [[Sour Mashing]] because it can be easier to control, and when implemented properly it produces a clean sour beer in a short amount of time. The possibility power of pasteurizing the soured wort also makes this a good method for making sour beers with a lot of residual malt sweetness (e- A review: Old traditions, new opportunities. BrewingScience. 72. 78-88.g10. sour barley wines), and should also make it attractive to brewers who are concerned about infection issues in their cold side equipment (equipment that is used post23763/BrSc19-boil) 10bossaert.]</ref><ref>[httphttps://sourbeerblogonlinelibrary.wiley.com/fast-souring-lactobacillusdoi/full/10.1002/ Millerjib.569 Dysvik, MattA. Dec 20, 2014Liland, K. H. "Fast Souring with ''Lactobacillus'' – Best Practices, SensoryMyhrer, & Science"K. Sour Beer BlogS.]</ref>, Westereng, B. When souring wort, some brewers first [[Wort_Souring#How_to_Pre-Acidify|lower the pH of the wort to 4Rukke, E.0-4O.3]] before pitching ''Lactobacillus'', de Rouck, G. This has sometimes been found to help the head retention of the beer, and helps to protect the wort from contaminating microorganismsWicklund, T. (2019) Pre-fermentation with lactic acid bacteria in sour beer production. J. Inst. Brew. For more information, see the [[Lactobacillus#Foam_Degradation|''Lactobacillus'' page section on Foam Degradation]125: 342– 356. https://doi.org/10.1002/jib.569.]</ref>.
Generally, ''[[Pediococcus]]'' is Although this process generally does not used with this method (include the use of ''PediococcusBrettanomyces'' is generally used in long , some creative brewers have applied wort souring techniques to longer aged [[Mixed Fermentation]] sours with beers and barrel aged beers that do contain ''[[Brettanomyces]]''), however [[Pediococcus#Commercial_Pediococcus_Cultures|Bootleg Biology]] has released a blend of ''Pediococcus'' strains that are reportedly good for souring wort.
Important note regarding aluminum pots: souring Many brewers prefer this process over [[Sour Mashing]] because it can be easier to control, and when implemented properly, it produces a clean sour beer in an aluminum vessel may strip the aluminum of the protective oxide layer. The oxide layer is only stable at a pH short amount of 4.5 - 8.5time. ThereforeHowever, kettle souring in the environment created provides an aluminum pot is generally not recommended <ref>[http://www.pfonline.com/articles/aluminum-surface-finishing-corrosion-causes-ideal situation for contaminations and-troubleshooting Aluminum Surface Finishing Corrosion Causes great care should be taken to prevent contamination of both yeast and Troubleshooting. W. John Fullen, Boeing Research and Technology & Jennifer Deheck, Boeing, Seattle, Washington, USA. 10/17/2014.spoilage microbes (see [[Wort_Souring#Contamination_Concerns|Contamination Concerns]]</ref>below).
<blockquote>"''Mixed culture fermentation The possibility of pasteurizing the soured wort also makes this a good method for making sour beers produces one thingwith a lot of residual malt sweetness (e.g. sour barley wines), and also makes it an attractive process for brewers who are concerned about infection issues in their cold side equipment (kettle souringequipment that is used post-boil) produces another thing<ref>[http://sourbeerblog. If you’re going to make a malty red ale that is kettle souredcom/fast-souring-lactobacillus/ Miller, don’t call it a Flanders RedMatt. Honor the tradition Dec 20, 2014. "Fast Souring with ''Lactobacillus'' – Best Practices, Sensory, & Science" . Sour Beer Blog.]</ref>. When souring wort, some brewers first [[Wort_Souring#How_to_Pre- Sean Burke Acidify|lower the pH of the wort to 4.0-4.3]] before pitching ''Lactobacillus''. This sometimes helps the head retention of the Commons Brewerybeer, Kettle Souring Presentationand it sometimes helps to protect the wort from contaminating microorganisms. For more information preventing the loss of head retention in sour beers, CBC 2015see the [[Lactobacillus#Foam_Degradation|''Lactobacillus'' page section on Foam Degradation]].</blockquote>
==Contamination Concerns==When working with lactic acid-producing bacteriaGenerally, the brewer’s goal ''[[Pediococcus]]'' is usually to attain clean-tasting sourness, while obtaining desirable flavor contributions from these bacteria, and simultaneously minimizing off-flavors. It should be noted that off flavors span the range from undesired by most, to desirable to some. For example, isovaleric acid not used with this method (''Pediococcus'' is a compound known for its footy aroma that would be considered an off flavor generally used in many beerslong aged [[Mixed Fermentation]] sours with ''[[Brettanomyces]]''); however, yet it gives [[Pediococcus#Commercial_Pediococcus_Cultures|Bootleg Biology]] has released a highly desired flavor blend of ''Pediococcus'' strains that are reportedly effective to certain French cheesesuse for all wort souring methods.
With that said, contamination issues are among Important note regarding aluminum pots: souring in an aluminum vessel may strip the aluminum of the biggest challenges when pre-souring wort with ''Lactobacillus''protective oxide layer. This The oxide layer is because ''Lactobacillus'' does not fully ferment wort by itself (see [[100%25_Lactobacillus_Fermentation|100% ''Lactobacillus'' fermentation]])only stable at a pH of 4.5 - 8.5. When yeast fully ferments wort into beerTherefore, alcohol, hops, and a low pH all work together to prevent most spoilage microorganisms from contaminating the beer (although contamination can certainly happen with beer spoilage microbes such as ''Brettanomyces'', ''Pediococcus'', etc.) kettle souring in an aluminum pot is generally not recommended <ref>[http://suigenerisbrewingwww.blogspotpfonline.com/2014articles/02/factaluminum-surface-orfinishing-fictioncorrosion-cancauses-pathogensand-survivetroubleshooting Aluminum Surface Finishing Corrosion Causes and Troubleshooting.html "Fact or Fiction? Can Pathogens Survive in Beer?" Sui Generis BlogW. John Fullen, Boeing Research and Technology & Jennifer Deheck, Boeing, Seattle, Washington, USA. 0210/1817/2014. Retrieved 11/10/2016.]</ref>. When fermenting with ''Lactobacillus'' by itselfStainless steel (304 and 316) vessels are safe for holding acidified wort or beer, either no alcohol is produced or not enough alcohol is produced to have an antimicrobial effectas well as PET and HDPE plastics <ref>[http://www.plasticsintl.com/plastics_chemical_resistence_chart.html Chemical Resistance Chart. Usually hops are not used when souring wort with ''Lactobacillus'' because even small amounts of hops completely inhibit most commercial strains, but they also inhibit some spoilage microorganismsPlastics International. The high available sugars, warm temperatures typically used in souring wort, and a lack of alcohol and hops therefore increases the chances for contamination during souring wort with ''Lactobacillus''Retrieved 01/03/2017.]</ref>.
Contaminates can include a variety of molds, yeasts<blockquote>"''Mixed culture fermentation for sour beers produces one thing, and bacteria(kettle souring) produces another thing. Contaminations can have If you’re going to make a variety of potentially unfavorable flavor effects on soured wort depending on the type of microbe(s) malty red ale that caused the contamination. One common off-flavor in is kettle soured beers has been associated with [[Butyric_Acid|butyric acid]], which is in and smells like human vomitdon’t call it a Flanders Red. Although Honor the exact source of butyric acid in kettle soured beers has not been identified that we know of, butyric acid is produced by anaerobic contaminates and '''not''' when 'tradition.'Lactobacillus'' is exposed to oxygen (see [[Lactobacillus#Effects_of_Oxygen|Effects of Oxygen on ''Lactobacillus'']] and [[Butyric_Acid|butyric acid]]). [[Isovaleric_Acid|Isovaleric acid]] is another off" -flavor that can be produced by both anaerobic and aerobic contaminatesSean Burke, Kettle Souring Presentation, CBC 2015. </blockquote>
Another common contaminate from improper ==Strain Selection==The strain of ''Lactobacillus'' is very important. As is explained below, the souring process should not take longer than 2 days, and some strains do not perform well within this timeframe. Not all strains or species are efficient to use for wort souring . ''Lactobacillus plantarum'' has proven to be the most successful species for kettle souring because it produces acidity very quickly, and it is brewernot as vulnerable to temperature shifts, although using any hops will usually completely prevent this species from producing lactic acid. 's yeast (''SL. cerevisiaebrevis'')has also been used with some degree of success, depending on the strain. BrewerWhile ''Pediococcus'' is generally not used for wort souring, Bootleg Biology's yeast ''Sour Weapon P'', which is not greatly inhibited by ''LactobacillusP. pentosaceus'', performs well at wort souring (see [[Pediococcus#Commercial_Pediococcus_Cultures|Commercial ''Pediococcus''cultures]]). Conversely, The ''LactobacillusL. delbruekii'' culture offered by White Labs is meant for long term souring and is greatly inhibited by the presence not a good choice for wort souring (other strains of active ''SL. cerevisiaedelbruekii'' might perform better) <ref name="Hubbe">[https://www.facebook.com/groups/MilkTheFunk/1407620505932826permalink/1212455192116026/ Effect of mixed cultures ?comment_id=1212475888780623&reply_comment_id=1212476575447221&comment_tracking=%7B%22tn%22%3A%22R3%22%7D Conversation with Andrew Addkison on microbiological development in Berliner Weisse (master thesis). Thomas HübbeMTF. 01/12/2016.]</ref>. The warmer temperatures encourage ''S. cerevisiae'' to ferment the wort quickly. This often results in a beer that isn't sour because Review the [[Lactobacillus#Culture_Charts|''Lactobacillus'' are out-competed by the yeast. Signs that yeast has contaminated the commercial cultures]] before selecting one for wort include the typical signs of yeast fermentation: the presence of a krausen, a gravity shift of more than 1.005 gravity points (or 0.5-1.0° Plato)souring, and looking at a sample of review the wort under a microscope. [[Alternative Bacteria Sources ]] page for tips on using alternative sources of yeast contamination can come from poor sanitation, but they can also come from the yeast manufacturer themselves. See see [[100%25_Lactobacillus_Fermentation|100% ''Lactobacillus'' fermentation]] for more informationsuch as probiotics, grain, etc.
Another source of contamination, which is arguably desired, happens when using a "wild" source ===''Lactobacillus'' Nutrient Requirements===Different strains of ''Lactobacillus''are known to have different nutrient requirements, including some metal ions. For example, when culturing ''Lactobacillus'' using non-plating techniques from grainsrequires manganese, fruitmagnesium, or from some other fermented food such as kefirpotassium, sauerkrautand sodium, etcwith manganese and magnesium being crucial for their growth.Brewer's wort has many of these nutrients naturally, yeast although zinc is generally deficient. One study looked at WLP672 (''L. brevis'') and other microbes can carry over from found that an increase of magnesium resulted in a faster souring phase, while zinc additions slightly slowed the culturing process (see [[Alternative Bacteria Sources]])souring phase. The only way to guarantee This suggests that only in at least the case for this strain of ''LactobacillusL. brevis'' from a , zinc additions should be added after the souring phase for yeast health. Excess magnesium could lead to negative flavor contributions to beer, so magnesium additions should not exceed 30 mg/l <ref>[https://www.brunwater.com/water-knowledge "wildWater Knowledge." source such as these ferment Martin Brungard. Bru'n Water website. Retrieved 12/02/2020.]</ref>. The addition of zinc also had several effects on the wortflavor and aroma compounds produced. Therefore, is to isolate experimenting with different nutrient additions for the microbe using plating techniques (see souring phase may result in widely different tasting beer <ref>[https://www.mdpi.com/2218-273X/10/12/1599 Chemical Composition of Sour Beer Resulting from Supplementation the Fermentation Medium with Magnesium and Zinc Ions. Aneta Ciosek, Katarzyna Fulara, Olga Hrabia, Paweł Satora, and Aleksander Poreda. 2020. DOI: https://doi.org/10.3390/biom10121599.]</ref>. See [Wild Yeast Isolationhttps://www.facebook.com/groups/MilkTheFunk/permalink/4107425732618943 this MTF thread]]). Otherwise there is a chance that wild yeast will also survive the culturing processfor more commentary on this study.
==Processes=Preventing Contamination=== Several techniques can be applied to prevent contamination in kettle soured beers. Many of these are covered in the sections below when they apply to specific processes, however we will cover them all in this section as well.
Pre-acidifying wort to 4.5 pH or lower helps to kill many microbes that are not tolerant of low pH. Flushing ===Souring in the wort with CO2 during the souring process is thought to help prevent aerobic contaminates <ref>Private correspondence with Khristopher Johnson from Green Bench Brewing Co by Dan Pixley. 05/04/2016.]</ref>. Maintaining a temperature between 113-120°F Boiler (45-49°CKettle Sour) helps encourage some species of ===Also known as ''Lactobacillus'kettle souring' and inhibits heat intolerant contaminates, however some species of ''Lactobacillus'' do not do well at these warmer temperatures , souring in the boil kettle (see or another vessel) is a simple process that is often used if the [[Lactobacillus#Culture_Charts|''Lactobacillus'' culture charts]])brewer wants to subsequently heat pasteurize the wort. Pre-boiling Pasteurizing the wort has been shown to help greatly with preventing contamination. This is likely due to the killing power advantage of boiling temperatures versus lower temperature pasteurization, as well as allowing the brewer to rack the heat pasteurized wort into a fermenter and steam killing microbes on the sides pitch brewer's yeast without fear of the an ongoing ''Lactobacillus'' infection in their post-boil kettle, the lid of the boil kettleequipment. This process was originally invented by a German scientist named Otto Francke, and called the air space above the wort"Francke acidification process". Boil kettles are inherently unsanitary vessels compared It was designed by Francke as a way to shortcut the mixed culture fermentation vesselsof Berliner Weisse; however, so great care should be taken to sanitize the vessel and prevent any air from getting into the vessel during the souring this process. Air can get was never really used in when temperatures cool Berliner Weisse production because it did not produce a product that resembled Berliner Weisse that was fermented with a mixed culture of yeast and a vacuum is created inside the kettlebacteria (including ''Brettanomyces''). Wrapping See the boil kettle and lid with plastic wrap has been a typical approach [[Berliner_Weissbier|Berliner Weisse]] page for homebrewers, as well as maintaining a constant temperature so as to avoid creating a vacuum inside more information on the kettle from cooling temperatureshistory of Berliner Weisse production methods <ref name="marshall">[https://drive.google.com/file/d/0B8CshC9nxYHdckhlbXFQN1hPbGc/view Kurt Marshall. CBC 2012 Presentation.]</ref><ref>[https://eurekabrewing.wordpress.com/2012/03/10/44-traditional-berliner-weisse/ Samuel Aeschlimann. Eureka Brewing Blog. "#44 Traditional Berliner Weisse". Commercial brewers must also prevent air from getting sucked into the boil kettle03/10/2012. Some have used sanitized and inflated sportsRetrieved 09/02/2017.]</ref><ref>[http://barclayperkins.blogspot.com/2020/09/beach balls or something similar to clog the boiler stack during kettle -souring, for example.html Shut up about Barclay Perkins. Continuous flushing with CO2 can also help prevent a vacuum from sucking in air"Kettle Souring". Finally, achieving the desired acidity as quickly as possible helps to cut the chances of contaminationRon Pattinson. Achieving the desired acid development within 48 hours is an ideal goal, but achieving it within 12-24 hours is even better09/17/2020.]</ref>.
Yeast contaminations can be difficult The brewing process is the same for any all-grain batch up until the first wort and sparge runnings are collected in the boil kettle. The temperatures that a typical mash out/sparge are not enough to avoid if they are coming from completely pasteurize the wort <ref>[https://onlinelibrary.wiley.com/doi/epdf/10.1002/j.2050-0416.2005.tb00221.x Enhancing the manufacturer Microbiological Stability of Malt and Beer – A Review. Anne Vaughan, Tadhg O’Sullivan and Douwe van Sinderen. 2005.]</ref><ref>[https://elifesciences.org/articles/04634 Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance. Nicholas A Bokulich, Jordyn Bergsveinson, Barry Ziola, David A Mills. 2015.]</ref><ref>[http://mmbr.asm.org/content/77/2/157.full The Microbiology of Malting and Brewing. Nicholas A. Bokulich and Charles W. Bamforth. 2013. DOI: 10.1128/MMBR.00060-12.]</ref>. Therefore, the best approach is to heat the wort for a short boil (1-2 minutes) in order to kill a greater degree (2-3 logs more) of thermotolerant microbes <ref name="Heit_boiling">[https://www.facebook.com/groups/MilkTheFunk/permalink/1180630378631841/?comment_id=1180634488631430&reply_comment_id=1180677581960454&comment_tracking=%7B%22tn%22%3A%22R2%22%7D Conversation with Bryan of Sui Generis Blog regarding boiling versus lower temperature pasteurization. 11/18/2015.]</ref><ref>[http://sourbeerblog.com/lactobacillus-2-0-advanced-techniques-for-fast-souring-beer/ ''Lactobacillus'' culture2.0 – Advanced Techniques for Fast Souring Beer. 11/18/2015. Retrieved 11/19/2015.]</ref><ref name="pasteurization">[http://www.mbaa.com/meetings/districtpresentations/DistrictPresentations/2011_03_10PasteurizationTechnologies.pdf "District Michigan MBAA Technical Meeting Grand Ledge, MI". MBAA Presentation. 2011.]</ref>. Look at Once all of the wort is collected in the boil kettle and preferably brought to a boil, the wort is chilled to around 80-115°F (37-46°C), depending on the ''[[Lactobacillus]]'' culture under a microscope that is being used. <blockquote style="background-color: lightgrey; border: solid thin grey; padding:10px;">The optimal fermentation temperature is different for different species of ''Lactobacillus'' as well as different strains within the same species, and fermenting outside of the recommended range can result in the lack of souring. Consult your yeast lab's website and check documentation to determine the optimal fermentation temperature range for yeast cellsyour given ''Lactobacillus'' product. See also the [[Lactobacillus#Culture_Charts|''Lactobacillus'' culture charts]]. If your ''Lactobacillus'' fermentation temperature range is unknown, the [[Lactobacillus#Culture_Charts|''Lactobacillus'' culture charts]] may provide some guidance based on species if the species is known. Otherwise, which experimentation will be much larger needed to find the best temperature (we recommend making different starters and holding them at different temperatures and circular measuring pH drop over time to find the optimal fermentation temperature). Note that some ''Pediococcus pentosaceus'' cultures such as [[Pediococcus#Bootleg_Biology_on_Sour_Weapon_P|Bootleg Biology's "Sour Weapon P"]] can also be used to kettle sour.</blockquote>Once chilled to the appropriate temperature, the wort in shape compared the kettle is inoculated with a culture of ''Lactobacillus''. The chilled wort can alternatively be transferred to another vessel where the much smaller, rod''Lactobacillus'' is added for the acid producing fermentation and then afterwards sent back to the boiler to pasteurize the acidified wort and kill the lactic acid bacteria. Hops should not be added at any point before inoculating the wort with a culture of ''Lactobacillus'' as most species of ''Lactobacillus'' will be inhibited by the presence of even very small amounts hops (1-shaped bacteria2 IBU or even just hop material from dry hopping). Reputable yeast companies will usually offer When using a replacement for any contaminated pure culture of ''Lactobacillus'' cultures, it is generally a good idea to [[Lactobacillus#Starters_and_Pitching_Rate|create a 500 mL starter]] for ~5-6 gallons of wort.
There are various ways of inoculating the wort. A reliable method is pitching a pure culture of ''Lactobacillus'' or a blend of ''Lactobacillus'' cultures. Alternatively, a handful of unmilled malted barley can be added to the kettle for inoculation, similar to how [http://www.lowoxygenbrewing.com/ingredients/a-sauergut-reactor/ sauergut] is made, instead of a pure culture since the husks of [[Grain|grain]] carry many microorganisms. If unmilled grain is added it is thought that filling the head space of the kettle with CO<sup>2</sup> (or another gas like argon or nitrogen; always provide proper ventilation when working with any gasses <ref>[https://www.brewersassociation.org/press-releases/brewers-publications-presents-gose-brewing-a-classic-german-beer-for-the-modern-era/ Allen, Fal. "Gose: Brewing a Classic German Beer For the Modern Era". Brewers Publications. 2018. Pg 126.]</ref><ref>[https://beerandbrewing.com/dictionary/DfG8FdFjfm/nitrogen/ Nick R Jones. "The Oxford Companion to Beer definition of nitrogen". Craft beer & Brewing Magazine website. Retrieved 10/21/2018.]</ref>) will help decrease off-flavors such as "footiness" from [[Isovaleric Acid]] which are produced by aerobic microbes that are naturally present on the grain <ref name="khris_johnson">Personal correspondence with Khristopher Johnson of Green Bench Brewing Co. and Dan Pixley. 05/24/2016.</ref>. Keeping the temperature between 109-115°F (42.8-46°C) will encourage the ''Lactobacillus'' resident on the grain and will discourage other bacteria. Temperature consistency is critical during this process <ref name=Processes"young_grains">[https://www.facebook.com/groups/MilkTheFunk/permalink/1356058381089039/?comment_id=1356464531048424&comment_tracking=%7B%22tn%22%3A%22R%22%7D Conversation with Jeff Young from Blue Owl Brewing Co on souring from grains. 07/21/2016.]</ref>. Lowering the pH of the [[Wort_Souring#How_to_Pre-Acidify|wort to under 4.5 (ideally 4.0 - 4.3 when souring with grain)]] with lactic acid or phosphoric acid will discourage other unwanted bacteria and wild yeast from thriving in the wort during the incubation period. This will also help with head retention (see [[Lactobacillus#Foam_Degradation|''Lactobacillus'' and head retention]]) <ref>[[Lactobacillus#Foam_Degradation]]</ref>. Souring with grains should occur within 1 or 2 days if done correctly <ref name="young_grains"></ref>. Do not consume wort that has been soured with grains until after it has been fully fermented by yeast because there is a chance that food poisoning pathogens will be present until ethanol is produced. See [[Grain#Malt_Inoculated_Wort|Blue Owl Brewing's grain inoculation methodology and data]] for more information on inoculating with grain. Consider [[Alternative Bacteria Sources]] for more reliable approaches to using "wild" ''Lactobacillus'', or ''Lactobacillus'' from sources other than yeast labs.
===Souring in If a pure culture of ''Lactobacillus'' bacteria is used it has historically been recommended to fill the head space of the fermenter with CO<sup>2</sup> gas or another type of gas like argon or nitrogen to purge the Boil Kettle===Also known as oxygen (oxygen does not cause ''Lactobacillus''to produce [[Butyric Acid|butyric acid]] or [[Isovaleric Acid|isovaleric acid]], but some brewers have reported that purging oxygen will help reduce sulfur in the finished beer). Purging oxygen could also discourage [[Mold|mold]] growth. Mold growth during the souring process has been reported from time to time by homebrewers, and if mold grows in contact with the wort then it probably should be discarded (see the [[Mold]] page for more information) <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2144219142272955/ Pavel Dunn. Milk The Funk Facebook group thread on mold growth during kettle souring'''. 06/23/2018.]</ref>. However, many homebrewers and some professional brewers have reported having success without purging with CO<sup>2</sup> <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1778865588808314/ Various members of Milk The Funk. Milk The Funk Facebook thread on purging kettle sours with CO<sup>2</sup>. 08/03/2018.]</ref><ref>[https://www.milkthefunk.live/podcast/2018/4/2/episode-004-kettle-souring -with-adi-hastings-from-omega-yeast-labs Adi Hastings. Milk the Funk "The Podcast"; Episode #004. 04/02/2018. Retrieved 04/16/2018.]</ref>(~20:30 mins in ), and a [http://brulosophy.com/2018/04/16/the boil -impact-of-open-fermentation-on-kettle is -sour-beer-exbeeriment-results/ Brulosophy blind triangle test] was unable to find a significant difference between a simple process kettle sour that was CO<sup>2</sup> purged and one that was soured in an open vessel. Using some CO<sup>2</sup> to keep positive pressure in the kettle could help prevent contaminants that create [[Butyric Acid|butyric acid]] and other off-flavors from entering the kettle due to negative pressure, and is often used if the brewer wants to subsequently heat pasteurize approach that commercial brewers take <ref>Personal correspondence with Steph Cope of CraftHaus Brewing Co. 02/06/2016.</ref>. The kettle should be held at the desired temperature for 24-72 hours (in some cases longer, but no longer than 5 days - slower acidification increases the chances of the wortgrowth of contaminating microbes and off-flavor production from contaminating microbes and/or unwanted alcohol production from contaminating yeast). Pasteurizing Depending on the wort has strain of ''Lactobacillus'', and the desired sour level, the advantage time of allowing incubation is ultimately a variable that is up to the brewer to rack (see the pasteurized wort into a fermenter ''[[Lactobacillus]]'' page for suggested temperatures and times for specific strains). The kettle lid should be firmly in place and pitch brewer's yeast without fear optionally sealed with plastic wrap so that other microorganisms do not get in. Potential for the formation of an ongoing [[Butyric Acid]] and [[Isovaleric Acid]] when using only a pure culture is extremely slight assuming that contamination does not occur. Temperature shifts during kettle souring are not a concern as long as the temperature does not get too high or low for the specific ''Lactobacillus'' infection in their postculture. Some species, such as ''L. plantarum'', create acidity at room temperature so some brewers will pitch this strain at around 90-boil equipment100°F and let the temperature fall to room temperature during souring. Other species might not perform as well at colder temperatures so maintaining a fairly consistent hot temperature is desirable. If the temperature is allowed to fall, take precautions on not allowing any dust to get sucked into the fermenter since temperature decreases will create a vacuum inside the fermenter (flushing with CO<sup>2</sup> is a good way to prevent a vacuum).
The brewing process In order to address the challenges of creating a sealed environment in a commercial boil kettle, which is often left open to the same for any all grain batch up until the first wort and sparge runnings are collected into environment through the boil kettle. The temperatures that a typical mash out/sparge reach should be enough stack, some commercial brewers find it beneficial to pasteurize rack the wort <ref name="pasteurization">[http://science.howstuffworks.com/life/cellular-microscopic/pasteurization4.htm Heat pasteurization]</ref>, however we advise heating from the wort for a short (1-2 minutes) boil in order kettle to kill a greater degree mashtun, brite tank, fermenter (2-3 logs moreoften dedicated) of thermotolerant microbes <ref name="Heit_boiling">[https://www, or another vessel that seals and purges well to sour in.facebook.com/groups/MilkTheFunk/permalink/1180630378631841/?comment_id=1180634488631430&reply_comment_id=1180677581960454&comment_tracking=%7B%22tn%22%3A%22R2%22%7D Conversation The mashtun or other vessel is first cleaned, sanitized, and often purged with Bryan of Sui Generis Blog regarding boiling versus lower temperature pasteurization. 11/18/2015.]CO</refsup><ref>[http://sourbeerblog.com/lactobacillus-2-0-advanced-techniques-for-fast-souring-beer/ ''Lactobacillus'' 2.0 – Advanced Techniques for Fast Souring Beer. 11/18/2015. Retrieved 11/19/2015.]</refsup>. Once all of the wort is collected in the boil kettle (vessel, and preferably brought to a boil), at the wort is chilled to around 80-115°F (37-46°C), depending on correct temperature for the given culture of ''[[Lactobacillus]]'' culture that is being used. Once chilled to the temperature that is appropriate, the wort in the kettle is inoculated with a culture of ''Lactobacillus''is pitched into the vessel and the vessel is sealed off. Hops should not be added at any point before inoculating If the vessel is sealed and air tight temperature shifts from cooling won't suck air into the wort with vessel and a culture of ''Lactobacillus''; most species of ''Lactobacillus'' potentially more sanitary souring fermentation will be inhibited by occur. Using a fermenter or brite tank (if there are multiple) has the presence advantage of even very small amounts hops (1-2 IBU not occupying a bottleneck vessel such as the mashtun or even just hop material from dry hopping)boil kettle, but has more risk if the fermenter is not dedicated to kettle souring. When using a pure culture Dedicating removable soft parts like gaskets and hoses will minimize the risk of ''Lactobacillus'', infection originating from the fermenter or brite tank if it is generally a good idea not dedicated to souring <ref>[[Lactobacillus#Starters_and_Pitching_Rate|create https://www.facebook.com/groups/MilkTheFunk/permalink/1778027798892093/ Various professional brewers. Milk The Funk Facebook post about souring in a 500 mL startermashtun, brite tank, or other vessel for commercial brewers. 08/02/2017.]] for ~5-6 gallons of wort</ref>.
There are various ways Once the level of inoculating acidity is reached (this can be tested with a reliable [[PH_Meter|pH meter]], or in the wort. A reliable method is pitching case of using a pure culture of ''Lactobacillus''can safely be taste tested), or the wort is brought to a blend of ''Lactobacillus'' culturesboil. Alternatively, a handful of unmilled malted barley can The wort may be added to boiled normally in the kettle for inoculation instead case of any style of beer that requires a pure culturelonger boiling process, since or it may be boiled for no more than a minute or two in the husks case of grain carry many microorganismsmaking a [[Berliner Weissbier]]. If unmilled grain is addedTechnically speaking, it the wort doesn't need to be boiled at all (this is thought that filling called [http://www.garshol.priv.no/blog/331.html Raw Ale]). Heat pasteurization at 180°F (82°C) for 15 minutes will kill even the head space of the kettle with CO2 will help decrease off-flavors such as "footiness" from most heat tolerant ''Lactobacillus'' species <ref>[[Isovaleric AcidLactobacillus#Tolerance_of_Extreme_Temperature|Lactobacillus wikipage; Tolerance of Extreme Temperature]], which are produced by aerobic microbes that are naturally present on the grain </ref><ref name="khris_johnsonpasteurization"/>Personal correspondence with Khristopher Johnson . Note that boiling a soured wort that has a pH lower than 5.0 will decrease the amount of Green Bench Brewing Coprotein coagulation, potentially resulting in a hazier beer or more sediment in the fermenter <ref>[http://beerandwinejournal.com/proper-boil-ph/ Chris Colby. "Easy way to Hit The Proper Boil pH". Beer and Dan PixleyWine Journal blog. 07/01/2013. 05Retrieved 03/2402/20162018.]</ref>. Keeping the temperature between 109-115°F (42.8-46°C) will encourage the Haze and sediment can be avoided by choosing to boil long enough to hit a hot break ''Lactobacillusbefore'' resident on souring the grain and will discourage other bacteria. Temperature consistency is critical during this process <ref name="young_grains">wort (see [https://www.facebook.com/groups/MilkTheFunk/permalink/13560583810890392008265249201679/?comment_id=13564645310484242008553569172847&reply_comment_id=2008577055837165&comment_tracking=%7B%22tn%22%3A%22R%22%7D Conversation with Jeff Young example MTF post from Blue Owl Brewing Co on souring from grains. 07/21/2016.Chris Prechel]</ref>). Lowering Raw ales are also fairly hazy in nature due to the pH lack of the [[Wort_Souring#How_to_Pre-Acidify|wort to under 4.5 (ideally 4.0 - 4.3)]] will also discourage many other bacteria hot break from thriving in the wort during the incubation periodboiling. This will also help with head retention <ref>See [[LactobacillusWort_Souring#Foam_Degradation]]</ref>. Souring with grains should occur within 1 or 2 days if done correctly <ref name="young_grains"></ref>. Consider [[Alternative Bacteria SourcesHaze|Haze]] below for more reliable approaches to using "wild" ''Lactobacillus'', or ''Lactobacillus'' from sources other than yeast labsinformation.
If Deciding whether or not to boil the wort can also depend on whether or not there was a pure culture considerable amount of alcohol produced as commonly happens when the wort is contaminated with yeast. Pure cultures of ''Lactobacillus'' bacteria is used it is ideal but do not necessary to fill the head space show typical signs of the fermenter with CO2 gas (some brewers have reported fermentation that this will help reduce sulfur in the finished beer). Keeping positive pressure in the kettle we are used to seeing with CO2 will help prevent contaminates that create [[Butyric Acid|butyric acid]] and other off-flavors from entering the kettle due to negative pressureyeast fermentations, such as forming a krausen, and is often the approach that commercial brewers take producing a lot of CO<refsup>Personal correspondence with Steph Cope of CraftHaus Brewing Co. 02/06/2016.2</refsup>. The kettle should be held at the desired temperature for 24-72 hours (in some cases longer, but no longer or fermenting wort more than 5 days)~1. Depending on the strain of ''Lactobacillus'', and the desired sour level, the time of incubation is ultimately a variable that is up to the brewer 005 gravity points (see the ''[[100% LactobacillusFermentation]]'' page for suggested temperatures and times for specific strains). The kettle lid should be firmly in place and optionally sealed with plastic wrap so that other microorganisms do not get in. Potential for formation of See [[Butyric Acid]] and [[Isovaleric AcidWort_Souring#Dealing_With_Yeast_Contamination|Dealing With Yeast Contamination]] when using only a pure culture is extremely slight to none assuming contamination does not occurbelow.
Once the level of acidity soured wort is reached (this boiled or heat pasteurized, it can be tested with a reliable safely added to the primary fermenting vessel without worries of future infections. The wort is aerated as normal, and brewer's yeast, or ''[[PH_Meter|pH meterBrettanomyces]]'' yeast, or in is then pitched into the case wort as normal (usually brewer's yeast is used if infection of using cold side equipment is a pure culture can safely be taste testedconcern). At a pH of 3.4 or lower, the acidity of the wort is brought to a boilcan reportedly effect the fermentation of some strains of brewer's yeast <ref name="low ph">[http://www.homebrewtalk.com/f127/no-hop-berliner-weisse-415067/index3.html#post5280971 Michael Tonsmeire on HBT]</ref><ref>[http://www.themadfermentationist.com/2016/12/quick-sour-then-what-acid-tolerance-of.html "Quick Sour, then what? Acid Tolerance of Brewer’s Yeast. " The wort may be boiled normally in the case Mad Fermentationist blog. Michael Tonsmeire. 12/13/2016. Retrieved 12/14/2016.]</ref>. For example, a published study showed that growth of any style US-05 was 82% at a pH of beer that requires 3.51, and 53% at a pH of 3.17. Fermentation was delayed by 2-4 days (the lower the pH, the longer boiling processthe start of fermentation was delayed) <ref name="peyer_2017">[http://www.asbcnet.org/publications/journal/vol/2017/Pages/ASBCJ-2017-3861-01.aspx Sour Brewing: Impact of Lactobacillus amylovorus FST2.11 on Technological and Quality Attributes of Acid Beers. Lorenzo C. Peyer, Martin Zarnkow, Fritz Jacob, David P. Schutter, or it may be boiled for no more than Elke K. Arendt. 2017.]</ref>. It is recommended to pitch a minute or two in the case healthy starter of making yeast, possibly with a [[Berliner Weissbier]]higher cell count than normal. Technically speakingWhen using dry yeast, re-hydrating as per the manufacturer's recommendations, using a yeast nutrient like Go-Ferm is recommended. Many yeast strains have been successfully used by MTF members to ferment pre-acidified wort doesn't need : US05, S04, WY1098/WLP007/OYL-006, Belle Saison, Sacch Trois, Bret brux, B. clausenii, B. custersianus, Bret Drie (BSI), WY3711, WY3726, and [[Kveik|kveik]] to be boiled at all name a few (this is called see references) <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1105185972842949/ Conversation on MTF about using specific yeast strains in acidic wort. 7/6/2015.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2666743113353886/ Multiple MTF members. Milk The Funk Facebook group thread about fermenting kettle sours with kveik. 05/15/2019.]</ref>. [http://www.garsholthemadfermentationist.privcom/2016/12/quick-sour-then-what-acid-tolerance-of.html Michael Tonsmeire] has shown results that suggest that English yeast strains might attenuate slightly more and give better flavor results than other strains; Richard Preiss from Escarpment Labs expressed similar observations <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1509509862410556/?comment_id=1509520015742874&comment_tracking=%7B%22tn%22%3A%22R4%22%7D MTF conversation with Richard Preiss about English ale strains and pH tolerance.no 12/blog13/3312016.html Raw Ale]</ref>. Brewers who are having difficulty fully fermenting pre-acidified wort can try growing their yeast in the soured wort (pasteurize the soured wort first if needed) with yeast nutrients (Fermaid K + DAP, for example). Heat pasteurization at 170°F This assumes that the wort still has a lot of sugar left over after souring (76if not, DME can be added).6°C) See [[Packaging#Acid_Shock_Starters|Acid Shock Starters]] for 15 minutes should kill more information on how to acclimate yeast to a highly acidic environment to improve fermentation. Escarpment Labs reported seeing stalled fermentations in kettle soured wort when the selected ''Lactobacillus'' culture being used produced acetic acid on the higher end, and they suggest using a species like ''L. plantarum'' that does not produce high amounts of acetic acid relative to sour the wort other strains from species like ''L. brevis'', and that perhaps limiting oxygen can help reduce acetic acid production <ref name>[https://www.youtube.com/watch?v=LuVoydgzK8w Nate Ferguson. "pasteurizationQuick Souring with Lactobacillus 101" . Escarpment Labs video presentation. 06/09/2020.]</ref> (~19:50 mins). Some brewers have reported a pH shift, either up or down, by 0.1 to 0.3, or no shift at all from the point of after the second boil and after the final yeast fermentation <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/3177062738988585/ Survey of brewers on pH shift between post-souring and yeast fermentation. 01/03/2019.]</ref>. This change in pH caused by the yeast fermentation might be due to many variables such as compounds released by the yeast, consumed by the yeast, strains of yeast/bacteria, water profile, malt recipe, dry hopping, etc.
Deciding whether or not to boil the wort can also depend on whether or not there was The usual kettle souring process involves fermenting with a considerable amount normal ale strain of alcohol producedsome sort, and lacks ''Brettanomyces''. Without ''Brettanomyces'', which commonly happens when the wort there is contaminated with yeast. Pure cultures a lack of ''LactobacillusBrettanomyces'' do not show typical signs character which is the result of fermentation that we are used to seeing with yeast fermentationsthe unique esters, such as forming a krausenphenols, producing a lot and fatty acids that this genus of CO2, or fermenting wort more than ~1.005 gravity points yeast produces (see [[100% Lactobacillus FermentationBrettanomyces#Secondary_Metabolites|''Brettanomyces'' secondary metabolites]]). If a yeast contamination produces a significant amount of alcohol during the souring process For example, then this presents a problem when it comes to boiling. Although 100% pure ethanol boils at 173.1°F/78.4°C <ref name="boiling_of_alcohol">traditional [[http://chemistry.about.com/od/moleculecompoundfacts/f/What-Is-The-Boiling-Point-Of-Alcohol.htm Boiling temperature of ethanolBerliner_Weissbier|Berliner Weisse]]</ref>was fermented with a mixed culture containing ''Brettanomyces'', and this was considered the lower most important aspect of achieving the concentration fruity ester character of ethanol in the wort that beer style historically (technically beer at this point if it has been fully attenuated by yeast), the higher the temperature required for boiling off the ethanol. For example, at 5% ABV it takes approximately 197°F/92°C for the ethanol to boil <ref>see [httphttps://wwwdocs.clawhammersupplygoogle.com/blogsspreadsheets/moonshine-still-blogd/122438691CNrO46TPSFpjhO3HX1-making-moonshine-still-temperature Making Moonshine: Still Temperature. Retrieved 01CbKK5rhFd7uGWdpONf7AJAlU/11/2016.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1212116758816536/?comment_idedit#gid=1212140998814112&comment_tracking=%7B%22tn%22%3A%22R%22%7D Conversation with Russell Carpenter on MTF. 01/11/2016.0 Benedikt Koch's table comparing esters of traditional Berliner Weisse versus kettle soured Kindl Weisse and Belgian gueuze]</ref>). Time is Kettle sours can also required to boil off the ethanol, so this may not be as big of a concern as it first appears (racked into oak barrels and have ''warning: vaporized ethanol is highly flammable)Brettanomyces''pitched at that time. Another and perhaps more important consideration This approach is that boiling and high heat pasteurization temperatures can have a negative effect on the flavor of fermented beer. Beer already has anti-bacterial properties, such as low pH, presence of alcohol, and hops (although hops may not be present in wort being soured), so higher pasteurization temperatures arentaken by some commercial brewers who don't necessarily required for beer. For these reasons, the beer industry commonly heat pasteurizes beer at 140°F/60°C for 15 minutes, and this is also adequate for pasteurizing soured beer <ref>[http://www.sciencedirect.com/science/article/pii/S0023643806002854#bib16 A suitable model of microbial survival curves for beer pasteurization. Sencer Buzrul. 2006.]</ref>. In the case of an accidental yeast contamination during the souring process, another option is want to expose their fermentation vessels to simply dump the batch and start again with a pure culture of living ''Lactobacillus'' or ''Brettanomyces''. Boiling soured wort that hasn't had an accidental yeast contamination (and thus still has a high specific gravity) probably has less It is also one method for controlling the level of an effect on sourness in the flavor than it does on fully fermented beer. Other than lactic acid, since the flavor components that different strains of ''Lactobacillus'' produce are not well defined, so it will be difficult to determine if boiling soured wort will have a negative impactis killed off. However, brewers who boil kettle soured wort don't often report that the boiling causes flavor issues <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1464590560235820/?comment_id=1465040723524137&reply_comment_id=1465146946846848&comment_tracking=%7B%22tn%22%3A%22R4%22%7D Conversation with Bryan from Sui Generis blog on MTF regarding boiling soured wort. 11/10/2016.]</ref>.
Once the soured wort is boiled or heat pasteurized, it can be safely added to the primary fermenting vessel without worries of future infections. The wort is aerated as normal, and brewer's yeast, or ''See also:* [[Brettanomyces]]'' yeast is then pitched into the wort as normal (usually brewer's yeast is used if infection of cold side equipment is a concern). At a pH of 3.4 or lower, the acidity of the wort can reportedly effect the fermentation of some strains of brewer's yeast <ref name="low ph">[httphttps://www.homebrewtalkmilkthefunk.comlive/podcast/2018/f1274/no2/episode-hop004-berlinerkettle-weissesouring-415067/index3.html#post5280971 Michael Tonsmeire on HBT]</ref>. It is recommended to pitch a healthy starter of yeast, possibly with a higher cell count than normal. In the case of using dry yeast, re-hydrating as per the manufacturer's recommendations and using a adi-hastings-from-omega-yeast nutrient like Go-Ferm is recommended. Many yeast strains have been successfully used by labs MTF members to ferment pre-acidified wort: US05, S04, WY1098/WLP007/OYL-006, Belle Saison, Sacch Trois, Bret brux, B. clausenii, B. custersianus, Bret Drie (BSI), WY3711, "The Podcast" interview with Adi Hastings of Omega Yeast Labs on kettle souring] and WY3726 to name a few (see reference) <ref>[https://www.facebookmilkthefunk.comlive/groupspodcast/MilkTheFunk2018/permalink11/110518597284294926/ Conversation on MTF about using specific yeast strains in acidic wortepisode-007-lactobacillus-microbiology-with-dr-bryan-heit-of-sui-generis-brewing-blog episode #007 ''Lactobacillus'' microbiology with Dr. Bryan Heit]. 7* [https:/6/2015fb.]<watch/5I4mUUvQKC/ref>. Brewers who are having difficulty fully fermenting pre-acidified wort can try growing their yeast in the soured wort (pasteurize the soured wort first if needed) Brewing Network, Brew Strong interview with yeast nutrients Fal Allen from Anderson Valley Brewing (Fermaid K + DAP, author of "Gose: Brewing a Classic German Beer for examplethe Modern Era"). This assumes that the wort still has a lot of sugar left over after on kettle souring (if not, DME can be added)in commercial breweries. See [[Saccharomyces#Fermentation_Under_Low_pH_Conditions|Fermenting in low pH conditions]] for more information.
===Souring in the Primary Fermenter===
Wort can be soured in the primary fermenter before adding other yeasts. This is generally a good approach for brewers who aren't concerned with pasteurization and infections of their cold side equipment. This also has the advantage benefit of possibly producing a more complex sour beer overall, or at least a sour beer that will evolve over time. It has the advantage over a more traditional [[Mixed Fermentation]] in that ''Lactobacillus'' is used to guarantee at least a certain level of sourness. This is also a good process to use for making a [[Berliner Weissbier]].
The process is very similar to the kettle souring technique, except with the exception that the wort is never pasteurized after it is soured. The This all -grain brewing process is the same for any all -grain brewing process, except that , after the boil , the beer is only chilled to the recommended temperature for the ''Lactobacillus'' strain that the brewer is going to use. Using grain husks for souring with this method is not advised inadvisable since the grain will stay in the fermenter during primary fermentation, and unwanted microbes on the grain husks would potentially have a longer exposure to the wort. Instead, the brewer should use a pure strain of ''[[Lactobacillus]]''. As a result of not using grains to sour the wort, there is remains less concern of developing [[Butyric Acid]] or [[Isovaleric Acid]] with this method. Even still, lowering the pH of the [[Wort_Souring#How_to_Pre-Acidify|wort to under 4.5 (ideally 4.0 - 4.3when souring with grain)]] will also discourage contaminating bacteria from thriving in the wort during the incubation period. This will also help with head retention <ref>[[Lactobacillus#Foam_Degradation]]</ref>. There is also the option of [[Mixed_Fermentation#Reusing_a_Sour_Yeast_Cake|using a sour yeast cake]] from another sour beer as the bacteria inoculation.
Once cooled to the desired temperature (, usually around 90-115°F or 32.2-46°C(see the [[Lactobacillus#Culture_Charts|''Lactobacillus'' culture charts]] for desirable temperature ranges for different ''Lactobacillus'' cultures), the wort is racked to the primary fermenting vessel. Note that the wort should contain a low amount of IBU's IBUs when using this process since IBU's IBUs can inhibit many (but not all) species of ''[[Lactobacillus]]''. Using no Eliminating hops is can be a good approach to getting more acidity, but if hops are required , then using less than 6 IBU's IBUs is a good guideline in general (see the [[Lactobacillus#Culture_Charts|''Lactobacillus'' culture charts]] for tips on hop tolerance for different ''Lactobacillus'' cultures). To achieve a low IBU wort consider mash hopping; mash . Mash hopping has been reported to reduce IBU's IBUs by ~70% <ref>[http://www.homebrewersassociation.org/how-to-brew/resources/conference-seminars/ ''Putting Some Numbers on First Wort and Mash Hop Additions''. David Curtis NHC 2014 Presentation.]</ref>). It is generally a good idea to create a 500 mL starter beforehand for ~5-6 gallons of wort (see [[Lactobacillus#Starters_and_Pitching_Rate|''Lactobacillus'' starters]]). Once the wort is racked to the primary fermenting vessel, the ''Lactobacillus'' culture is added directly to the fermenter. No other yeasts are added at this time. The ''Lactobacillus'' bacteria is allowed to incubate by itself in the wort for 21-5 3 days with the before mentioned target temperature maintained throughout the incubation period (some ''Lactobacillus'' species/strains may continue to produce acidity under lower temperatures, for example ''L. plantarum''). Small temperature fluctuations should not adversely affect the souring process as long as the temperature stays within the desirable range for that particular strain of ''Lactobacillus'', although the brewer should take care not to allow any dust to get sucked into the fermentation vessel as a result of temperature decreases. During the incubation time, as long as ''Lactobacillus'' is the only microbe growing in the wort, the gravity will not drop more than a few points and the fermentation will be calm (see [[Lactobacillus#100.25_Lactobacillus_Fermentation|''Lactobacillus'' fermentation]]. The exact time frame of incubation depends on the species/strain of ''Lactobacillus'', the manufacturer's recommendation, and the brewer's desired acidity level. Acidity can safely be measured with a reliable [[PH Meter|pH Meter meter]] throughout this time. If possible, it is advised that the brewer fill fills the head space headspace of the fermenter with CO2. Some brewers have reported report that this helps to reduce sulfur production, but if ''Brettanomyces'' is added to the beer later on in the process and allowed to age, this shouldn't be a concern.
After reaching the desired acidity level is reached from the incubating ''Lactobacillus'' bacteria, the brewer can crash cool the fermenter down to the desired temperature that is desired for the primary fermenting yeast. Both ''[[Saccharomyces]]'' and ''[[Brettanomyces]]'', or a blend can be used as primary fermenting yeast. ''Brettanomyces'' is often chosen because of it's higher tolerance of a low pH environment (3.4- pH <ref name="low ph">[http://www.homebrewtalk.com/f127/no-hop-berliner-weisse-415067/index3.html#post5280971 Michael Tonsmeire on HBT]</ref>), although many ''Saccharomyces'' strains have been successfully used (see the [[Wort_Souring#Souring_in_the_Boil_Kettle|Souring in the Boil Kettle]] section above). If the chosen yeast requires aeration and the brewer has the ability, the sour wort should be aerated before pitching yeast. Brewers have had good luck using Fermentis dry yeast products in the non-aerated wort. Re-hydrating after, of course, rehydrating the dry yeast as per the manufacturer's instructions and with using a yeast nutrient such as Go-Ferm is effective <ref>[httphttps://www.scottlab.com/productgoferm-102goferm "GoFerm". Scott Labs website. Retrieved 09/19/2018.aspx Go-Ferm]</ref>. The wort is then fermented out as normal. The brewer can consider other [[Brewing Methods]] such as pitching ''Brettanomyces'', a mixed culture, or commercial sour beer dregs into secondary.
===Souring with Malted Grains in Another Vessel Before Racking to the Primary Fermenter===This process is very similar to souring the wort in the a kettle. This method is ideal for those who wish to use grains to introduce ''Lactobacillus'' to the beer, or for breweries that do not want to tie up their boil kettle. If done properly, the formation of [[Butyric Acid]] and [[Isovaleric Acid]] should be minimal.
The wort is mashed and sparged as normal (and alternatively brought to a short boil), and is then lowered to somewhere between 109-115°F (42.8-46°C). This temperature favors ''Lactobacillus'', while discouraging Enterobacteriaceae. Optionally, the mash pH can be lowered to 4.4 with lactic acid or acidulated malt to further discourage Enterobacteriaceae activity. Once the desired temperature (and optionally pH) is reached, a handful of fresh malted unmilled grain is added to the mash and allowed a few minutes to inoculate the mash with the microbes found naturally on the grain husks. The wort is then transferred to a second vessel such as a glass carboy. A pure culture of ''Lactobacillus'' can be pitched, or a handful of fresh malted unmilled grain is added. The vessel should be filled to the very top, minimizing the oxygen levels inside the vessel. The vessel should be stored in a heated environment that maintains a temperature between 109-115°F (42.8-46°C) for 1 to 3 days depending on how much acidity the brewer wants (the faster the souring process the better; Jeff Young from Blue Owl achieves the desired acidity in about 18 hours usually) <ref name="young_grains"></ref><ref name="james_spencer">[http://beerandwinejournal.com/sour-wort-berliner/ Spencer, James. December 15, 2014. Beer and Wine Journal.] </ref>.
Once the 1 to 4 day time period has been reached, the wort is transferred to the boil kettle and boiled as normal. Boiling will kill all of the microorganisms in the wort, and will provide the option for adding hops and other kettle additions. Just as with kettle souring, the wort doesn't have to be boiled, but can be instead heat pasteurized at 170°F 140°F (76.6°C60°C) for 15 minutes <ref name="pasteurization" />, or at 140°F (60°C) for 15 minutes if a yeast contamination produced a significant amount of alcohol(this temperature effectively heat pasteurizes most organisms while not driving off the aromatics and volatiles from the yeast fermentation). Once boiled or pasteurized, the wort can be chilled and handled in the same way as the above methods for wort souring.
[http://beerandwinejournal.com/sour-wort-berliner/ James Spencer provides an article] that fully explains his process, as well as a step by step video guide and tasting on Beer and Wine Journal <ref name="james_spencer" />.
 
An alternative to this method would be to culture ''Lactobacillus'' from the grain first and then use it in a kettle souring process. See [[Alternative_Bacteria_Sources#Culturing_Lactobacillus_From_Grains|Culturing From Grains]] and [[Grain#Malt_Inoculated_Wort|Blue Owl Brewing's grain inoculation methodology and data]] for more information.
===Tips on Maintaining Heat for Homebrewers===
Keeping the temperature as steady as possible for a pure culture ''Lactobacillus'' fermentation is not that important. Just try to stay in the range of the temperature best suited for a given species (see the [[Lactobacillus#Culture_Charts|''Lactobacillus'' culture charts]]). ''Lactobacillus plantarum'' strains are known for being effective at sourness all the way down to room temperatures, and so that is a species that might work well for those who cannot maintain the warmer temperature that other species might require. Here are some tips from MTF members on maintaining warm temperatures for wort souring <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1279628395398705/ Tips from many MTF members on maintaining heat for sour wortingwort souring. 04/07/2016.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1429055690455974/ Tips from many MTF members on maintaining heat for sour worting wort souring 2. 10/07/2016.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1557805380914337/?comment_id=1557821360912739&comment_tracking=%7B%22tn%22%3A%22R7%22%7D Tips from many MTF members on maintaining heat for wort souring 3.]</ref>:
:''Editor's note: please be cautious when using heat sources to heat plastic fermenters; PET bottles have been known to will melt or warp when applying too much heat to them.''
* Electric heating blanket or heating pad.
* A room space heater with towels or a t-shirt to insulate.
* If it fits, place the fermenter in an insulated 10 gallon Rubbermaid cooler (like the kind that many people use as mash tuns).
* For metal vessels such as a kettle, keep it on the stove burner and turn the burner on when heat is lost.
* Put the wort in a plastic bucket and seal with lead, then lower that bucket into a ten gallon water cooler and close the lid. Optionally, insulate with blankets.
* Use a glass carboy FermWrap™ heater or another carboy heater attached to a sensor thermowell through the cap and a temperature controller.
* Use a Brew Belt Fermentation Heating Belt and wrap a "hoody" sweater or some other fabric around it to insulate, and a temperature controller.
* Use a Kenley Fermentation Carboy Heater which comes with a thermostat (also marketed as a "Kombucha Heating kit") <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2878858452142350/?comment_id=2878872112140984&comment_tracking=%7B%22tn%22%3A%22R%22%7D Chris Hunter. Milk The Funk Facebook group post on heating kettles for wort souring and kveik. 08/29/2019.]</ref>.* Use an aquarium heater (Enheim band brand recommended), fill a large plastic cooler with water and keep the water warm with the aquarium heater. Set the souring vessel in the cooler. See [https://www.homebrewersassociation.org/how-to-brew/homebrew-hacks-aquarium-heater-fermentation-controller/ this AHA article].* Use an electric kettle with a temperature controller, such as a Grainfather, Braumeister, Brewer's Edge Mash & Boil, or a home build electric kettle.* Use a "Seedling Heat Mat" that is used to keep plants warm. * Use an [http://anovaculinary.com/ Anova sous vide device] - place the vessel in a larger vessel with water, and keep the heat applied to the outside water with the Anova. Works well for maintaining heat for starters too. See this [https://www.facebook.com/groups/MilkTheFunk/permalink/2373341069360760/ MTF thread] for a Q&A on how to use an Anova for various brewing related methods.* Similar to the Anova, James Spenser of [http://basicbrewing.com/ BasicBrewing.com] video on using an [https://www.youtube.com/watch?v=bquf6EhRe5Q InstantPot® to maintain "yogurt" temperatures for 1 gallon batches].
* Build an insulation box out of Styrofoam. See [https://www.facebook.com/groups/MilkTheFunk/permalink/1429055690455974/?comment_id=1429072997120910&comment_tracking=%7B%22tn%22%3A%22R9%22%7D this MTF post] and [https://www.facebook.com/groups/MilkTheFunk/permalink/1429055690455974/?comment_id=1429344713760405&comment_tracking=%7B%22tn%22%3A%22R4%22%7D this MTF post].
* Sour in a keg, and heat the keg. If the keg is not fitted with a [http://seanterrill.com/2015/06/25/build-a-better-spunding-valve/ spunding valve] or an airlock, be sure to burp the keg in case of an accidental yeast contamination as that would result in a lot of built up pressure. See [https://www.facebook.com/photo.php?fbid=10207497057613773&set=p.10207497057613773&type=3&permPage=1 this MTF post].
* If not using a plastic vessel, keep the vessel in an oven (if it fits) or an electric smoker.
* Use a [http://www.amazon.com/Zoo-Med-Reptile-Cable-14-75-Feet/dp/B001OVBEEK/ref=sr_1_1?ie=UTF8&qid=1460052384&sr=8-1&keywords=zoomed+reptile+heat+cable ZooMed Reptile Heater Cable] inside of a fermentation chamber. Line the inside of the chamber walls with the wire and secure with duct tape.
* If maintaining heat is not possible with any of the techniques mentioned, use cool the wort to around 100°F/38°C and let the wort free fall down in temperature while souring with a species such as ''L. plantarum'' that produces acidity at room temperature. [[Lactobacillus#Omega_Yeast_Labs_on_OYL-605|Omega Yeast Labs OYL-605]] works well without hot temperatures.
===How to Pre-Acidify===
[[File:Mark Horsley Foam.jpg|thumb|300px|[https://www.facebook.com/groups/MilkTheFunk/permalink/1145033525524860/ Photo provided by Mark Horsley. Left is a 5.30 pH wort and the right is a 4.75pH wort. Both were kettle soured with ''L. delbrueckii''. Both reached 3.30 pH post ferment with finishing gravity of 1.7 Plato.]]] :''Note: pre-acidifying applies to the wort that will become the batch of sour beer, '''not''' Lactobacillus starters. Pre-acidifying a Lactobacillus starter will slow the growth of the Lactobacillus in a starter. The idea of the starter is to grow an effective amount of cells while pre-acidifying the main batch of wort aims to inhibit contaminating microbes and retain foam positive proteins. See [[Lactobacillus#Samuel_Aeschlimann.27s_Starter_Procedures|''Lactobacillus'' starters]] for more information.''  After the production of the wort, but before pitching the culture of ''Lactobacillus'', some brewers like to slightly lower the pH of the wort with food grade lactic acid (available at homebrew stores) or phosphoric acid before adding the ''Lactobacillus''. Pre-acidifying wort can be applied to any wort souring method in general, and while using any species/source of ''Lactobacillus'' including lab cultures, probiotics, yogurt, grains, sauerkraut, etc. Acidifying the wort before pitching ''Lactobacillus'' has several benefits, such as discouraging unwanted microbes that may have accidentally been introduced into the wort, and helping to prevent [[Lactobacillus#Foam_Degradation|''Lactobacillus'' from degrading foam proteins]](although both of these points have been debated on MTF; see [https://www.facebook.com/groups/MilkTheFunk/permalink/1925483400813198/ this MTF thread] as an example). There have also been observations by Jeff Mello of [[Bootleg Biology]] and others that pre-acidification results in .1 to . The idea 3 pH points lower than if pre-acidification is not applied (this pH difference is to get not explained by the addition of acid because pH is logarithmic; see [https://www.facebook.com/groups/MilkTheFunk/permalink/1925483400813198/ this MTF thread]). Pre-acidified wort down also appears to reach a low pH of 4.0 - 4.4 before adding in less time after the ''Lactobacillus''is pitched for souring.
There currently is no formula for how much lactic acid to add to a volume of wort due to the different buffering capacities of wort <ref>[http://www.mbaa.com/districts/Northwest/Events/Documents/Study%20in%20the%20Practical%20Use%20of%20Lactic%20Acid%20Bacteria.pdf A Study in the Practical Use of Lactic Acid Bacteria. Greg Doss from Wyeast Laboratories Inc. 2014.]</ref>. Water chemistry spreadsheets and formulas geared towards mash pH adjustments may not be accurate for wort pH adjustments since wort does not contain grain material, ; however there has been reports on MTF and recommendations from Martin Brungard (author of Bru'n Water) that [https://sites.google.com/site/brunwater/ Bru'n Water] can accurately determine how much lactic acid is needed to lower a wort's pH, or at least provide a starting point <ref name="delange_brungard"></ref>. We encourage readers to experiment with water chemistry calculators to see if they can accurate accurately predict wort pH adjustments or get a starting point for how much acid to add <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1244954842199394/?comment_id=1245053585522853&comment_tracking=%7B%22tn%22%3A%22R%22%7D MTF Thread with Landon Ortiz. 03/03/2016.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1290987234262821/?comment_id=1353870694641141&reply_comment_id=1354548117906732&comment_tracking=%7B%22tn%22%3A%22R9%22%7D Conversation with Adam Boura and Mark Trent on MTF regarding using Bru'n Water for adjusting wort pH. 07/18/2016.]</ref>.
Another method of finding out how much acid to add would be to pull a measured portion of the wort out, and add acid in measured amounts until the desired pH is reached. The amount of acid added can then be scaled up to the full volume of the wort. A.J. Delange suggests that the buffering capacity of wort might be half that of the mash (based on the kilograms of malt used in the mash) <ref name="delange_brungard">[http://www.homebrewtalk.com/showthread.php?t=587124 A.J. Delange. Homebrewtalk Thread. 07/19/2016.]</ref>.
Trial and error might be the most practical approach for homebrewers that don't have an abundance of wort to spare for finding out how much acid to add to a sample and scaling that up. Post boil, the wort pH is generally around 5.0 - 5.2. Adjusting the pH of wort before pitching ''Lactobacillus'' can then be done fairly easily by taking a trial and error approach. Using 1 mL of 88% lactic acid per .1 shift in pH for 5 gallons of wort is a good starting measurement. As an example, say that 5 gallons of wort has a pH of 5.0 just before pitching the ''Lactobacillus'' culture. Begin by adding 5 mL (1 US teaspoon) of food grade lactic acid to the wort for a target of ~around 4.4 pH(or somewhere between 4.2 and 4.8; target 4.0 - 4.3 if souring with grain or some other non-purified source of bacteria to help inhibit the growth of unwanted bacteria that could produce off-flavors). Stir gently, then take another pH reading. Continue to add 1-2 mL of lactic acid until the wort has the desired pH. Derek Springer has observed that it takes about one tablespoon (15 mL) of 88% lactic acid to reach a pH of 4.2 - 4.5 8 for 5 gallons of wort <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1290987234262821/?comment_id=1291031577591720&comment_tracking=%7B%22tn%22%3A%22R3%22%7D Conversation with Derek Springer on MTF regarding acidifying wort. 04/24/2016.]</ref>, ; however a higher amount may be required if the brewer's water is high in bicarbonate (24 mL for 5 gallons of wort to reach a pH of 4.4 was reported by Sean McVeigh for his water which contains 375ppm of bicarbonates <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1290987234262821/?comment_id=1291031577591720&reply_comment_id=1291118190916392&comment_tracking=%7B%22tn%22%3A%22R%22%7D Conversation with Sean McVeigh on MTF on acidifying wort. 04/23/2016.]</ref>). Once a pH of 4.0 2 - 4.4 8 is reached, pitch the ''Lactobacillus'' culture. This small amount of lactic acid shouldn't have much of an impact on flavor. If a more precise method for determining the required amount of lactic acid is required, a sample of the wort can be pulled and lactic acid or phosphoric acid can be added to it until the target pH is reached, and then that amount can be scaled up (a micropipette might be required to measure very small amounts of lactic/phosphoric acid). ===Maintaining a Lactic Acid Bacteria Culture===It is possible to maintain a pure culture ''Lactobacillus'' culture from batch to batch of beer. One method that is common with commercial brewers is to collect an appropriate volume of the soured wort after souring, but before pitching yeast. Commercial brewers will often use a designated corny keg or sanke keg depending on the volume that is required. After souring the wort a small portion will be transferred using a closed system into the keg. The keg is then refrigerated until it is needed for the next batch. Storing the soured wort cold and adding around 20 grams of chalk for 5 gallons is recommended for lengthening the viability of the ''Lactobacillus'' culture while also inhibiting the growth of any potential contaminants, however, the ''Lactobacillus'' might perform differently based on a number of variables such as how long it is stored (longer storage means less viability; expect 2-4 weeks of maximum storage) <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2357765947584939/?comment_id=2357782397583294&reply_comment_id=2357956110899256&comment_tracking=%7B%22tn%22%3A%22R%22%7D Lance Shaner. Milk The Funk Facebook group thread on storing ''Lactobacillus''. 11/08/2018.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1415038668524343/ Roy Ventullo. "Lacto experiment" dataset, tab labelled "Experiment V (condensed)". Uploaded to MTF on 09/23/2016 by Dan Pixley.]</ref>. Re-pitching might lead to an increase in acid production as well. We recommend experimenting with this process and finding the right pitching volume/storage time until repeatability can be achieved. For commercial brewers, Breakside Brewery recommends using 5-7% by volume of stored ''Lactobacillus buchneri'' (WY5335) soured wort for a new batch, although this might vary based on many factors such as the strain of ''Lactobacillus'', the storage pH, and the storage time <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2070392932988910/?comment_id=2070546129640257&comment_tracking=%7B%22tn%22%3A%22R%22%7D Neil Caron. Milk The Funk Facebook group thread on how much volume of stored soured wort to pitch for a new batch. 04/24/2018.]</ref>. Homebrewers can use a similar process. For a 5 gallon batch of soured wort, collect around 1 liter of wort in a jar before pitching yeast. Keep the culture cold until the next use. Don't seal the jar completely tight in case refermentation occurs in the jar. If the culture is kept for more than a couple of months, then [[Lactobacillus#Starters_and_Pitching_Rate|create a 500 mL starter]] to ensure that the bacteria culture is still viable.  Yeast contamination is a concern when storing soured wort, especially in a sealed vessel such as a keg. Pure cultures of ''Lactobacillus'' cannot effectively ferment most sugars in wort (see [[Lactobacillus#100.25_Lactobacillus_Fermentation|100% ''Lactobacillus'' fermentation]]), therefore there are a lot of sugars available for contaminants to take advantage of when storing wort that has been soured but not fully fermented with yeast. Good sanitation practices are of the utmost importance. Equipment used should be thoroughly clean and ideally sterilized, or at least boiled if possible (or exposed to 82°C/180°F water for 15 minutes). If a yeast contamination goes unnoticed, then the keg can become heavily pressurized and potentially dangerous even when stored cold. We recommend regularly checking a keg of soured wort to ensure that over-pressurization does not occur, or use a spunding valve to ensure that over-pressurization does not occur. These methods only work with pure cultures of ''Lactobacillus'' (or at least cultures that do not contain an unwanted microbe that can take advantage of the residual sugars in the soured wort, such as yeast). Cultures from grains, [[Mixed_Cultures|mixed cultures]], or cultures from other fermented foods such as those listed on the [[Alternative Bacteria Sources]] wiki page, should be treated as a mixed culture that potentially contains yeast. See [[Mixed_Fermentation#Storing_a_Yeast_Cake_or_Sample|Storing a yeast cake or sample of a mixed culture]]. See also:* [https://www.facebook.com/groups/MilkTheFunk/?comment_tracking=%7B%22tn%22%3A%22R%22%7D Tips from Justin Amaral on MTF.] ==Contamination Concerns==When working with lactic acid-producing bacteria, the brewer’s goal is usually to attain clean-tasting sourness, while obtaining desirable flavor contributions from these bacteria, and simultaneously minimizing off-flavors. It should be noted that off flavors span the range from undesired by most, to desirable to some. For example, isovaleric acid is a compound known for its footy aroma that would be considered an off flavor in many beers, yet it gives a highly desired flavor to certain French cheeses and is acceptable by some in small amounts in mixed fermentation beer. With that said, contamination issues are among the biggest challenges when pre-souring wort with ''Lactobacillus''. This is because ''Lactobacillus'' does not fully ferment wort by itself (see [[100%25_Lactobacillus_Fermentation|100% ''Lactobacillus'' fermentation]]). When yeast fully ferments wort into beer, alcohol, hops, and a low pH all work together to prevent most spoilage microorganisms from contaminating the beer (although contamination can certainly happen with beer spoilage microbes such as ''Brettanomyces'', ''Pediococcus'', etc.) <ref>[http://suigenerisbrewing.blogspot.com/2014/02/fact-or-fiction-can-pathogens-survive.html "Fact or Fiction? Can Pathogens Survive in Beer?" Sui Generis Blog. 02/18/2014. Retrieved 11/10/2016.]</ref>. When fermenting with ''Lactobacillus'' by itself, either no alcohol is produced or not enough alcohol is produced to have an antimicrobial effect. Usually, hops are not used when souring wort with ''Lactobacillus'' because even small amounts of hops completely inhibit most commercial strains, but they also inhibit some spoilage microorganisms. The high available sugars, warm temperatures typically used in souring wort, and a lack of alcohol and hops, therefore, increase the chances for contamination during souring wort with ''Lactobacillus''.  Contaminates can include a variety of molds, yeasts, and bacteria. Contaminations can have a variety of potentially unfavorable flavor effects on soured wort depending on the type of microbe(s) that caused the contamination. One common off-flavor in kettle soured beers has been associated with [[Butyric_Acid|butyric acid]], which is in and smells like human vomit. Although the exact source of butyric acid in kettle soured beers has not been identified that we know of, butyric acid is produced by anaerobic contaminates and '''not''' when ''Lactobacillus'' is exposed to oxygen (see [[Lactobacillus#Effects_of_Oxygen|Effects of Oxygen on ''Lactobacillus'']] and [[Butyric_Acid|butyric acid]]). [[Isovaleric_Acid|Isovaleric acid]] is another off-flavor that can be produced by both anaerobic and aerobic contaminates.  Another common contaminate from improper wort souring is brewer's yeast (''S. cerevisiae''). Brewer's yeast is not inhibited by ''Lactobacillus''. Conversely, ''Lactobacillus'' is can be inhibited by the presence of active ''S. cerevisiae'' <ref name="Hubbe">[https://www.facebook.com/groups/MilkTheFunk/permalink/1407620509266159/ Effect of mixed cultures on microbiological development in Berliner Weisse (master thesis). Thomas Hübbe. 2016.]</ref>. The warmer temperatures encourage ''S. cerevisiae'' to ferment the wort quickly. This often results in a beer that isn't sour because the ''Lactobacillus'' are out-competed by the yeast. Signs that yeast has contaminated the wort include the typical signs of yeast fermentation: the presence of a krausen, a gravity shift of more than 1.005 gravity points (or 0.5-1.0° Plato), and looking at a sample of the wort under a microscope. Sources of yeast contamination can come from poor sanitation, but they can also come from the yeast manufacturer themselves. See see [[100%25_Lactobacillus_Fermentation|100% ''Lactobacillus'' fermentation]] for more information.  Another source of contamination, which is arguably desired, happens when using a "wild" source of ''Lactobacillus''. For example, when culturing ''Lactobacillus'' using non-plating techniques from grains, fruit, or from some other fermented food such as kefir, sauerkraut, etc., yeast and other microbes can carry over from the culturing process (see [[Alternative Bacteria Sources]]). The only way to guarantee that only ''Lactobacillus'' from a "wild" source such as this ferment the wort, is to isolate the microbe using plating techniques (see [[Wild Yeast Isolation]]). Otherwise, there is a chance that wild yeast will also survive the culturing process.  Oxidative species of yeast can also contaminate wort that is being soured. Their fermentation can resemble that of brewer's yeast visually, however, they often do not attenuate wort. See [https://www.facebook.com/groups/MilkTheFunk/permalink/2502846349743564/?comment_id=2502876486407217&reply_comment_id=2508235855871280&comment_tracking=%7B%22tn%22%3A%22R%22%7D Dr. Bryan Heit's brief biochemistry explanation for "krausen" or "pellicles" caused by oxidative yeast and why they do not correspond with a drop in gravity if they are formed by oxidative yeast species]. Oxidative yeast may produce off-flavors, but not always. ===Preventing Contamination===Several techniques can be applied to prevent contamination in kettle soured beers. Many of these are covered in the sections below when they apply to specific processes, however, we will cover them all in this section as well.  Pre-acidifying wort to 4.5 pH or lower helps to kill many microbes that are not tolerant of low pH. Flushing the wort with CO2 during the souring process is thought to help prevent aerobic contaminates <ref>Private correspondence with Khristopher Johnson from Green Bench Brewing Co by Dan Pixley. 05/04/2016.</ref>. Maintaining a temperature between 113-120°F (45-49°C) helps encourage some species of ''Lactobacillus'' and inhibits heat intolerant contaminates, however, some species of ''Lactobacillus'' do not do well at these warmer temperatures (see the [[Lactobacillus#Culture_Charts|''Lactobacillus'' culture charts]]). Pre-boiling the wort has been shown to help greatly with preventing contamination. This is likely due to the killing power of boiling temperatures versus lower temperature pasteurization, as well as the heat and steam killing microbes on the sides of the boil kettle, the lid of the boil kettle, and the head space above the wort. Boil kettles are inherently unsanitary vessels compared to fermentation vessels, so great care should be taken to sanitize the vessel and prevent any air from getting into the vessel during the souring process. Air can get in when temperatures cool and a vacuum is created inside the kettle. Wrapping the boil kettle and lid with plastic wrap has been a typical approach for homebrewers, as well as maintaining a constant temperature so as to avoid creating a vacuum inside the kettle from cooling temperatures. Commercial brewers must also prevent air from getting sucked into the boil kettle. Some have used sanitized and inflated sports/beach balls or something similar to clog the boiler stack during kettle souring, for example. Continuous flushing with CO2 can also help prevent a vacuum from sucking in air. Finally, achieving the desired acidity as quickly as possible helps to cut down on the chances for contamination. Achieving the desired acid development within 48 hours is an ideal goal, but achieving it within 12-24 hours is even better. Yeast contaminations can be difficult to avoid if they are coming from the manufacturer of the ''Lactobacillus'' culture. Look at the culture under a microscope and check for yeast cells, which will be much larger and circular in shape compared to the much smaller, rod-shaped bacteria. Reputable yeast companies will usually offer a replacement for any contaminated ''Lactobacillus'' cultures. Contamination of the ''Lactobacillus'' strain itself in a production brewery is always a concern, especially if the ''Lactobacillus'' is not boiled. Thorough cleaning and sanitation regimes are required for preventing cross contamination. Brewers will often advise performing two cycles of near boiling water with caustic, followed by a sanitizing rinse. If metal parts can be removed from a system, they should be boiled. Soft parts such as hoses and gaskets should be reserved for sour brewing. Using a ''Lactobacillus'' strain that has been tested to be intolerant of 1-2 IBU's can also reduce the risk of cross contamination <ref name="Peyer_2017">[http://www.asbcnet.org/publications/journal/vol/2017/Pages/ASBCJ-2017-3861-01.aspx Sour Brewing: Impact of Lactobacillus amylovorus FST2.11 on Technological and Quality Attributes of Acid Beers. Lorenzo C. Peyer, Martin Zarnkow, Fritz Jacob, David P. De Schutter, Elke K. Arendt. 2017.]</ref>. Check with your QC lab or yeast lab for procedures for avoiding cross contamination. ===Dealing With Yeast Contamination===In the case of accidental yeast contamination, the yeast could produce a beer with off-flavors or a beer that is acceptable to drink, depending on the type of yeast and the stress of the hot fermentation. If the fermentation created a lot of off-flavors, it is best to dump the beer since many flavors may not get cleaned up at this point. If the beer tastes fine, the easiest option is to simply allow the beer to ferment out without doing a second boil to kill the ''Lactobacillus'' (and yeast). This decision depends on whether or not the brewer is prepared to deal with having living ''Lactobacillus'' exposed to their cold side equipment (racking equipment, fermenters, etc.; see [[FAQ#Do_I_need_separate_equipment|Do I Need Separate Equipment FAQ]]). Making this a [[Mixed Fermentation]] sour beer is also an option if the brewer has the fermentation space for it. If the brewer is not willing to expose their cold side equipment to the living ''Lactobacillus'', boiling the fermented/partially fermented beer is another option. If a yeast contamination produces a significant amount of alcohol during the souring process, then this presents a problem when it comes to boiling. Although 100% pure ethanol boils at 173.1°F/78.4°C <ref name="boiling_of_alcohol">[http://chemistry.about.com/od/moleculecompoundfacts/f/What-Is-The-Boiling-Point-Of-Alcohol.htm Boiling temperature of ethanol]</ref>, the lower the concentration of ethanol in the wort (technically beer at this point if it has been fully attenuated by yeast), the higher the temperature required for boiling off the ethanol. For example, at 5% ABV it takes approximately 197°F/92°C for the ethanol to boil <ref>[http://www.clawhammersupply.com/blogs/moonshine-still-blog/12243869-making-moonshine-still-temperature Making Moonshine: Still Temperature. Retrieved 01/11/2016.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1212116758816536/?comment_id=1212140998814112&comment_tracking=%7B%22tn%22%3A%22R%22%7D Conversation with Russell Carpenter on MTF. 01/11/2016.]</ref>. Time is also required to boil off the ethanol, so this may not be as big of a concern as it first appears (''warning: vaporized ethanol is highly flammable)''. Another and perhaps more important consideration is that boiling and high heat pasteurization temperatures can have a negative effect on the flavor of fermented beer. Beer already has anti-bacterial properties, such as low pH, presence of alcohol, and hops (although hops may not be present in wort being soured), so higher pasteurization temperatures aren't necessarily required for beer. For these reasons, the beer industry commonly heat pasteurizes beer at '''140°F/60°C for 15 minutes''', and this is also adequate for pasteurizing soured wort that accidentally fermented do to yeast contamination <ref>[http://www.sciencedirect.com/science/article/pii/S0023643806002854#bib16 A suitable model of microbial survival curves for beer pasteurization. Sencer Buzrul. 2006.]</ref>. Although the yeast will be killed during the pasteurization, so will the ''Lactobacillus'', and the brewer can trust that equipment downstream shouldn't get contaminated. Other options are to simply dump the batch and start again with a pure culture of ''Lactobacillus'', or do not pasteurize and let the ''Lactobacillus'' live. If the ''Lactobacillus'' is not pasteurized and allowed to live, the soured wort/beer should be treated with care so that it does not contaminate the rest of the brewery (see [[FAQ#Do_I_need_separate_equipment|'Do I need Separate Equipment?' FAQ]]). It is possible that the contaminating yeast out-competed the ''Lactobacillus'', which results in not much acid production. If the beer doesn't taste sour, then it is likely to not sour much during aging unless the ''Lactobacillus'' strain is very hardy (alternatively, pitch ''Pediococcus'' or a hardier strain of ''Lactobacillus'' like ''delbruekii'' or ''brevis'' to try and achieve acidity over time). If the contaminating yeast doesn't fully attenuate the wort, pitch a fresh slurry of yeast to finish the fermentation.  Boiling soured wort that hasn't had an accidental yeast contamination (and thus still has a high specific gravity) probably has less of an effect on the flavor than it does on fully fermented beer. Other than lactic acid, the flavor components that different strains of ''Lactobacillus'' produce are not well defined, so it will be difficult to determine if boiling soured wort will have a negative impact. However, brewers who boil kettle soured wort don't often report that the boiling causes flavor issues <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1464590560235820/?comment_id=1465040723524137&reply_comment_id=1465146946846848&comment_tracking=%7B%22tn%22%3A%22R4%22%7D Conversation with Bryan from Sui Generis blog on MTF regarding boiling soured wort. 11/10/2016.]</ref>. Another potential problem with boiling a fermented beer is scorching from excess trub at the bottom of the kettle. Boiling can also cause off-flavors from the lysis (bursting) of yeast and bacteria cells. If a ''Lactobacillus'' starter gets contaminated with yeast, it is best to throw away the starter and make another one, or use probiotics, yogurt, or some other [[Alternative_Bacteria_Sources|easy to find source of ''Lactobacillus'']]. ==Various Other Concerns=====Failed Souring===There are instances where wort souring fails for seemingly unknown reasons. Use a species or strain of ''Lactobacillus'' that is adapted well to souring wort within 24 hours, such as ''L. plantarum''. The lactic acid bacteria sometimes do not survive well during storage over long periods of time, so viability should be checked for long stored or mishandled cultures. Contamination with yeast can also prevent souring in some instances but not all. The use of hops should be avoided even for hop tolerant species (unless the brewer is experienced enough to predict the souring based on their lactic acid bacteria), and especially avoided if using ''L. plantarum''. Residual iso-alpha acids on the walls of kettle tanks/heat exchangers/piping could be enough to inhibit some strains of ''Lactobacillus'', specifically ''L. plantarum'', so kettles/heat exchangers/piping that have previously held highly hopped wort might need to be scrubbed clean before being used as a souring tank <ref>[https://www.stitcher.com/show/craft-beer-brewing-magazine-podcast/episode/episode-199-alex-flores-of-urban-south-kettle-sours-the-hard-way-85931878 Alex Flores. Craft Beer & Brewing Podcast. Episode 199: Alex Flores of Urban South Kettle-Sours the Hard Way. Retrieved 09/16/2021.]</ref>(~21 mins in)[http://sites.libsyn.com/315398/episode-116-kettle-souring-w-daniel-lepage-from-creature-comforts Bru Lab Podcast Episode 116: Daniel LePage, Director of Quality at Creature Comforts in Athens, Georgia, joins Cade in the lab this week to chat about kettle souring. Retrieved 10/06/2023.](~30 minutes in). ===Not Boiling and Dimethyl Sulphide (DMS)===This is generally not a concern. See [[Dimethyl Sulfide]] for an explanation why. ===Haze===The pH of boiling wort influences how well proteins are precipitated out, with a pH of about 5.2 being ideal for this mechanism. At a pH lower than 5.0, these proteins gain negative charges, and at a higher pH they gain positive charges, making them resistant to settling out during boiling. Boiling a low pH wort that has been acidified by the fermentation of ''Lactobacillus'' therefore does not effectively precipitate out haze-forming proteins. However, haze forming polyphenols, which are also required for haze formation, are greatly reduced by an unknown mechanism during kettle souring, which can potentially lead to good clarity in the final beer regardless of the protein level (although other factors might still lead to a hazy beer) <ref name="Peyer_2017" />. Additionally, some strains lactic acid bacteria are known to cause haze as a side effect of their lactic acid fermentation. ===Color===Maillard and various browning reactions lead to darkening of beer in general. These reactions are both temperature and pH related. A low pH will actually prevent these reactions and results in a quantitatively lighter color beer compared to a control beer that is not acidified <ref name="Peyer_2017" />. ===Oxygen===There is no scientific basis for the idea that a small amount of oxygen itself that is dissolved during wort souring has a great effect on the flavors that ''Lactobacillus'' produces. Regardless, some brewers report more consistent results when purging oxygen with CO<sub>2</sub>. See [[Lactobacillus#Effects_of_Oxygen|Effects of Oxygen on ''Lactobacillus'']] and [https://www.facebook.com/groups/MilkTheFunk/permalink/1778865588808314/ this MTF thread] that discusses the anecdotal experience of brewers who do not purge with CO<sub>2</sub>. The effects of oxygen on the beer could lead to other stability issues with the beer because the exposure to oxygen during wort production is thought to play a role in beer staling (see [[Aging and Storage]]), although hot side aeration is also thought to be a minor problem if at all <ref>[http://beersmith.com/blog/2014/01/31/flavor-stability-in-beer-with-dr-charlie-bamforth-beersmith-podcast-74/ Charlie Bamforth. Interview on BeerSmith about Hot Side Aeration. 01/31/2014. Retrieved 08/18/2017.]</ref>, and the impact of hot side aeration on sour beer has not been studied. Some brewers believe that purging all oxygen out of the system will help to prevent contaminating microbes that are aerobic (microbes that require oxygen) from creating [[Isovaleric_Acid#Kettle_Souring|isobutyric acid]]. Oxygen does not play a role in the production of [[Butyric Acid]] in wort soured beers because this compound is produced by anaerobic bacteria (bacteria that requires the absence of oxygen). Air/dust can carry contaminating microbes, which is a potential problem (see [[Wort_Souring#Contamination_Concerns|Contamination Concerns]] above), however, if the air is filtered somehow before entering the fermenting vessel then the oxygen itself shouldn't pose a problem to souring wort. Follow the links in this paragraph for more information. ===Yeast Harvesting===It is generally recommended to not re-use yeast that has fermented a soured wort. This has a stressful impact on the yeast. Some brewers have reported trying this, and not having good results <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2119435291418007/?comment_id=2119664111395125&comment_tracking=%7B%22tn%22%3A%22R%22%7D Ryan Sandlin. Milk The Funk Facebook group thread on re-using kettle sour yeast. 06/06/2018.]</ref>. However, some [https://www.facebook.com/groups/MilkTheFunk/permalink/2017284411633096/ commercial brewers] have claimed that repitching WY3711 as many as 100 (in one case) to 2000 (in a second case) generations in soured wort conditions has not posed a problem for them. If this is attempted, repitching the yeast from the middle of the yeast cake will select for the more acid tolerant cells. Some yeast strains may not be able to adapt to these conditions as well as others (more data is needed), however, it has been shown that ''S. cerevisiae'' can adapt to acidic conditions and become more tolerant of low pH conditions from generation to generation. See [[Saccharomyces#Fermentation_Under_Low_pH_Conditions|terminal acid shock]] for more information. Daniel LePage and Spencer Britton from Creature Comforts reported a "metallic" off-flavor from excess iron accumulation. The brewery found that yeast uptook most of the iron during fermentation and then released it over time. Removing as much of the yeast from the beer and as soon as possible resolved this issue. Creature Comforts resolved this by dumping the yeast from the bottom of the fermentation vessel daily for the first three days of yeast fermentation. They suspected that the iron is coming from storing the ''Lactobacillus'' culture after souring in a keg before repitching it for the next batch (Creature Comforts has been repitching the same ''Lactobacillus'' culture for 6 years at the time of their World Brewing Congress presentation in 2020). Iron build up also happened slowly in after packaging in cans, which supports their hypothesis that the yeast initially uptake the iron, but then begin to release it over time <ref>[http://sites.libsyn.com/315398/episode-116-kettle-souring-w-daniel-lepage-from-creature-comforts Bru Lab Podcast Episode 116: Daniel LePage, Director of Quality at Creature Comforts in Athens, Georgia, joins Cade in the lab this week to chat about kettle souring.]</ref>(~40 mins in). See also the [https://www.masterbrewerspodcast.com/194 MBAA Podcast episode 194 interview with Daniel LePage.]
===Concerns about Dimethyl Sulphide (DMS)Ropiness===* See Tonia Cornett of 10 Barrel reported having experienced a kettle sour beer becoming "ropy" (see [[Dimethyl SulfidePediococcus#.22Ropy.22_or_.22Sick.22_Beer|Ropiness]]). The issue was resolved by boiling the wort <ref>[https://beerandbrewing.com/podcast-episode-252-tonya-cornett-of-10-barrel-brewing/ Tonia Cornett. Craft Beer & Brewing Magazine podcast episode 252. 08/05/2022. Retrieved 09/16/2022.]</ref>(~38 mins in).
==See Also==
* [[Alternative Bacteria Sources]]
* ''[[Lactobacillus]]''
* [[Butyric Acid]]
* [[Isovaleric Acid]]
* [[Mixed Fermentation]]
===External Resources===
* [https://www.youtube.com/watch?v=LuVoydgzK8w Kettle souring; video presentation by Escarpment Labs.]
* [https://www.falsebottomedgirls.com/podcast/episode/d1c37e22/episode-25-whats-the-strain-its-lactobacillus False Bottom Girls Podcast Episode 25: What's the Strain? It's Lactobacill(us)!" - In depth discussion on kettle souring.]
* [http://suigenerisbrewing.blogspot.com/2015/07/how-i-sour-mash-recipe.html "How I Sour Mash & A Recipe"; Sui Generis Blog (includes Wort Souring and microbiology information).]
* [http://www.fivebladesbrewing.com/year-sour-mash/ "Year of the Sour Mash" by Derek Springer. This series of articles were written for his NHC 2015 presentation.]
* [http://sourbeerblog.com/lactobacillus-2-0-advanced-techniques-for-fast-souring-beer/ "Lactobacillus 2.0 - Advanced Techniques for Fast Souring Beer", by Matt Miller of Sour Beer Blog.]
* [https://byo.com/stories/issue/item/3353-overnight-acidification "Overnight Acidification" by Michael Tonesmeire, article for Brew Your Own Magazine on Jan/Feb 2016.]
* [http://brulosophy.com/2016/11/14/boil-vs-no-boil-berliner-weisse-exbeeriment-results/ "Boil vs. No-Boil Berliner Weisse | exBEERiment Results!" on Brulosophy blog.]
* [https://byo.com/article/catharina-sour-brazilian-kettle-soured-fruit-beer/ Catharina Sour – A Brazilian kettle-soured fruit beer.] See also thoughts on this style making it to the BJCP Style Guidelines [https://www.facebook.com/groups/MilkTheFunk/permalink/2167029939991875/ on MTF].
* [https://beerandbrewing.com/podcast-episode-252-tonya-cornett-of-10-barrel-brewing/ Tonia Cornett from 10 Barrel. Craft Beer & Brewing Magazine podcast episode 252.]
* [http://sites.libsyn.com/315398/episode-116-kettle-souring-w-daniel-lepage-from-creature-comforts Bru Lab Podcast Episode 116: Daniel LePage, Director of Quality at Creature Comforts in Athens, Georgia, joins Cade in the lab this week to chat about kettle souring.]
==References==

Navigation menu