13,696
edits
Changes
→Lachancea thermotolerans
'''Nonconventional Yeasts and Bacteria''' are yeasts and bacteria genre genera that haven't been greatly explored in alcoholic fermentation, but might prove to be worth exploration. This page contains anecdotal information, as well as scientific information that might prove useful for brewers who are looking to brew with microbes that don't include the typical lab yeasts and bacteria for sour/mixed fermentations. For yeasts and bacteria that are more often used in sour and mixed fermentations, see ''[[Saccharomyces]]'', ''[[Brettanomyces]]'', ''[[Lactobacillus]]'', and ''[[PediodoccusPediococcus]]'', [[Kveik#Commercial_Availability|Kveik]], and [[Mixed Cultures]]. For catching wild microbes (bioprospecting), see [[Wild Yeast Isolation]]. For more information on laboratory techniques, see [[Laboratory Techniques]]. For a family tree of yeast, see [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024638/figure/fig01/ this diagram]. - To do: - 2010 Domizio review: https://www.biorxiv.org/content/10.1101/2020.02.08.939314v2 - https://www.sciencedirect.com/science/article/pii/S0740002018309778 - https://www.tandfonline.com/doi/full/10.1080/03610470.2019.1569452 - https://www.facebook.com/groups/MilkTheFunk/permalink/2576419979052867/ - https://onlinelibrary.wiley.com/doi/full/10.1002/jib.381 - https://www.sciencedirect.com/science/article/pii/B978012816678900014X - https://www.researchgate.net/publication/337907047_Screening_for_the_Brewing_Ability_of_Different_Non-Saccharomyces_Yeasts - https://onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.14399 - https://www.intechopen.com/online-first/1164468
'''Under progress'''
==Yeasts==
===''Candida'' spp===
====''Candida glabrata''====
A strain of ''Candida glabrata'' was selected in a study for its high beta-glucosidase activity, its tolerance to ethanol, and its ability to utilize maltose, and was shown to produce novel flavor characteristics in beer fermentation, including a significant increase in geraniol <ref>[https://www.sciencedirect.com/science/article/abs/pii/S0308814622026887#f0020 Application of non-Saccharomyces yeasts with high β-glucosidase activity to enhance terpene-related floral flavor in craft beer. Xiaoyu Han, Qiuxing Qin, Chenyu Li, Xiaoxuan Zhao, Fangxu Song, Mengjiao An, Ying Chen, Xiuqin Wang, Weidong Huang, Jicheng Zhan, Yilin You. 2022.]</ref>.
===''Cyberlindnera'' spp.===
The organoleptic properties of several species from the genus ''Cyberlindnera'' have been studied with promising results for non-alcoholic wort fermentation. These results can also be applied to alcoholic mixed fermentation. Bellut et al (2019) reported pleasant fruity characteristics from 4 out of 6 strains of various species from this genus (the other two strains produced unpleasant solvent-like aromas). They did not produce significant alcohol (18-25% attenuation) and could not ferment maltose or maltotriose. While they all could ferment glucose, four of the six strains fermented sucrose and only one strain fermented fructose. IBU up to 100 were tested against these strains' ability to grow, and that high of an IBU had no reported effects. All strains tested did not produce phenols (POF-). Four of the six strains could tolerate up to 5% ABV, and two of those tolerated up to 7.5% ABV (the higher ABV resulted in longer lag times by 24-48 hours). All of the six strains tolerated a pH of 4 and five of the six strains tolerated a pH of 3 (only at a pH of 3 did the strains see an extended lag time during growth, from 12-78 hours depending on the strain), although the presence of lactic acid instead of the hydrochloric acid used in this study could have a stronger inhibitory effect. Glycerol production was low (0.18 - 0.36 mg/L). Two of the strains produced very high levels of acetaldehyde (9.7 and 8.1 mg/L), and one strain produced very high ethyl acetate (65.7 mg/L compared to 4.9-22.6 mg/L). Isoamyl acetate was produced at a wide range between the different strains, from 1.67 mg/L to 0.15 mg/L <ref name="Bellut_2019">[https://www.mdpi.com/2311-5637/5/4/103/htm Screening and Application of Cyberlindnera Yeasts to Produce a Fruity, Non-Alcoholic Beer. Konstantin Bellut, Maximilian Michel, Martin Zarnkow, Mathias Hutzler, Fritz Jacob, Jonas J. Atzler, Andrea Hoehnel, Kieran M. Lynch, and Elke K. Arendt. 2019. DOI: https://doi.org/10.3390/fermentation5040103.]</ref>.
Overall, the species that were favorable with fruity-like characteristics were: ''C. jadinii'', ''C. mrakii'', and two strains of ''C. subsufficiens''. The strains that were characterized as unpleasant were ''C. misumaiensis'' (described as solvent-like due to high levels of ethyl acetate) and ''C. fabianii'' (described as cabbage-like due to an unidentified aroma compound) <ref name="Bellut_2019" />.
====''Cyberlindnera subsufficiens''====
Due to the positive aroma characteristics and fermentation abilities in wort of one of the two strains of ''C. subsufficiens'' tested by Bellut et al. (2019) as mentioned above, the researchers chose to test for optimal fermentation conditions for this strain. It was determined that the highest fruitiness was achieved at the lowest fermentation temperature tested (62°F/17°C) and the lowest pitching rate (1 x 10<sup>10</sup> cells/mL), while the least fruitiness was achieved at the warmest fermentation temperature (80.6°F/27°C) and the highest pitching rate (6 x 10<sup>10</sup> cells/mL), following a linear model. They brewed a non-alcoholic beer with this strain and compared the sensory to two other non-alcoholic beers (NAB) and found that the NAB brewed with ''C. subsufficiens'' tasted less like unfermented wort and more fruity and tropical (more specifically described as "banana, pear, mango, maracuja, lychee") than the other two commercial NAB products. The fermentation time took 6 days at the warmest temperature (80.6°F/27°C) and 13 days at the coolest temperature (62°F/17°C). For a mixed fermentation with ''S. cerevisiae'', Bellut suggests fermenting ''C. subsufficiens'' at 68°F/20°C for 2-3 days, and then pitching ''S. cerevisiae'' and/or other microbes <ref name="Bellut_2019" /><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/3143999022294957/ Konstantin Bellut. Milk The Funk Facebook group thread on Bellut et al. 2019 study on Cyberlindnera. 12/21/2019.]</ref>.
===''Debaryomyces'' spp.===
[[File:D hansenii.jpg|thumb|Debaryomyces hansenii; photo by [http://www.gettyimages.co.uk/detail/photo/debaryomyces-hanseni-yeast-high-res-stock-photography/128615807].]]
''Debaryomyces'' is a genus of yeast commonly referred to as a spoilage yeast <ref>[https://en.wikipedia.org/wiki/Debaryomyces Wikipedia. Debaryomyces. Retrieved 09/03/2015.]</ref>. The non-pathogenic species ''D. hansenii'' is commonly found in cheese and is an osmotolerant, halotolerant, and xerotolerant (tolerant high amounts of salt and sugar, and low amounts of water) <ref>[https://en.wikipedia.org/wiki/Debaryomyces_hansenii Wikipedia. Debaryomyces hansenii. Retrieved 09/03/2015.]</ref>. Debaryomyces are associated with natural fermentation, and tend to develop during the maturation of beer <ref name="Brewlab_debaryomyces">[https://www.brewlab.co.uk/news/the-original-flag-porter-story "The Original Flag Porter Story". Brewlab website. 01/20/2017. Retrieved 12/08/2017.]</ref>. Many species of ''Debaryomyces'' have been to biotransform monoterpenes found in hop oils (see [[Hops#Hop_Derived_Compounds_In_Beer_and_Biotransformations|Hop Biotransformations]]).
Recently it was found living cells of a ''Debaryomyces'' species in a [https://www.brewlab.co.uk/news/the-original-flag-porter-story bottle of porter] found in a shipwreck under the English Channel that was dated to 1825. It is currently unknown how this yeast might have affected the flavor of the historical porter, but the characterization of this yeast is underway by Brewlab in the UK <ref name="Brewlab_debaryomyces" /><ref>[https://onlinelibrary.wiley.com/doi/full/10.1002/jib.641 Thomas, K., Ironside, K., Clark, L., and Bingle, L. (2021) Preliminary microbiological and chemical analysis of two historical stock ales from Victorian and Edwardian brewing. J. Inst. Brew., 127: 167– 175. https://doi.org/10.1002/jib.641.]</ref>. See also [https://www.facebook.com/groups/MilkTheFunk/posts/5338230866205084/?comment_id=5338705966157574 this post by Gareth Young] on tasting one of these bottles, and his potential attempts to culture microbes from other bottles.
Some species of ''Debaryomyces'' can produce exopolysaccharides (EPS), which are extracellular (produced and expelled outside of the cell) polymers of monosaccharides connected by glycosidic bonds with a degree of polymerization higher than 10. EPS assists in producing biofilms for microorganisms. It is possible that EPS from yeast could make beer "ropy" or "sick", similar to [[Pediococcus]] <ref name="Gientka_2015">[https://www.researchgate.net/publication/283498621_Exopolysaccharides_from_yeast_insight_into_optimal_conditions_for_biosynthesis_chemical_composition_and_functional_properties_-_review?fbclid=IwAR1X6Y0rnquoF6SD-eH9m6EWpLIefgZJFUJK51NJYBooJWngxEVS2aR3PKE Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties - review. Iwona Gientka, Stanisław Błażejak, Stanisław Błażejak, Lidia Stasiak, Lidia Stasiak, Anna Chlebowska-Śmigiel, Anna Chlebowska-Śmigiel. 2015.]</ref>.
====''Debaryomyces hansenii''====
''D hansenii'' is the most prevalent yeast in dairy and meat products as well as early stages of soy sauce fermentation. Various isolates exist originating from cheese, sake moto, edomiso, rennet, psoriasis, infected hands and salmon. In general, ''D. hansenii'' can be found in habitats with low water activity as well as in products with high sugar concentrations. Although ''D. hansenii'' is considered a non-pathogenic yeast, various clinical cases of ''D. hansenii'' exist. This yeast was originally isolated from saline environments and is maybe one of the most osmotolerant (can tolerate high levels of salt and sugar) yeasts in existence. <ref name="Eureka D. Hansenii">[https://eurekabrewing.wordpress.com/2014/04/18/hello-my-name-is-debaryomyces-hansenii/ . Eureka Blog's Post on D. Hansenii, Retrieved 8/9/2017]</ref>
See also:
* [https://eurekabrewing.wordpress.com/2014/04/18/hello-my-name-is-debaryomyces-hansenii/ "Hello My Name is ''Debaryomyces hansenii''" by Samuel Aeschlimann.]
=====General Information=====
As already mentioned, ''D. hansenii'' can tolerate very high levels of salt. Some sources cite salinity levels up to 24% whereas ''Saccharomyces cerevisiae'' commonly tolerate levels up to 10%. Such high tolerances are not that common in living organisms and can be used on industrial scale by cultivating ''D. hansenii'' at high salt levels to prevent the growth of other yeasts (quasi non-sterile production conditions). Beside dealing with high osmolarities, ''D. hansenii'' secrete toxins capable of killing other yeasts. <ref name="Eureka D. Hansenii"></ref>
Although this yeast is already an extremophile(an organism that thrives in physically or geochemically extreme conditions that are detrimental to most life on Earth) in terms of osmolarity, it does not stop there. Besides the normal sugars, ''D. hansenii'' is capable of metabolizing n-alkanes, melibiose, raffinose, soluble starch, inositol, xylose, lactic acid and citric acid. Furthermore, this yeast can form arabitol(a sugar alcohol) as well as riboflavin (vitamin B2). ''D. hansenii'' is therefore used on industrial scale to produce vitamin B2 and has a big potential for other biotechnological processes. <ref name="Eureka D. Hansenii"></ref>
''D. hansenii'' is a very common yeast in cheeses and seems to have a major impact on the development of the microflora as well as the taste. As previously mentioned, ''D. hansenii'' can metabolize lactic acid, citric acid and galactose. The metabolization of lactic acid by yeasts has been shown to have an impact on the bacterial flora of the cheese in types such as Limburger, Tilsiter, Port Salut, Trappist, Brick and the Danish Danbo. Furthermore, ''D. hansenii'' forms volatile compounds associated with a “cheesy” flavor. For example, ''D. hansenii'' seems to have a major role in the development of Cheddar and Camembert cheese by synthesizing S-methylthioacetate (most prevalent volatile sulfur compound found in cheese).<ref name="Eureka D. Hansenii"></ref>
====''Debaryomyces nepalensis''====
''Debaryomyces nepalensis'' is an osmotolerant yeast isolated from rotten apples that is known to utilize both hexoses and pentoses and produce industrially important metabolites like ethanol, xylitol and arabitol. <ref name="D. Nepalensis1">[https://www.ncbi.nlm.nih.gov/pubmed/18810540 . Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters. Himabindu Kumdam, Shweta Narayana Murthy and Sathyanarayana N Gummadi. 2013.]</ref>
=====Sugar Utilization and Ethanol Creation=====
{| class="wikitable sortable"
|-
! Carbon Source !! Carbon Source Consumed (g/L) !! Ethanol Created (g/L)
|-
| Sucrose || 82.00 || 9.90
|-
| Glucose || 84.75 || 9.05
|-
| Arabinose || 86.70 || 2.43
|-
| Fructose || 80.40 || 9.84
|-
| Glycerol || 50.60 || 0.77
|-
|}
<ref name="D. Nepalensis1"></ref>
=====General Information=====
'''Effect of nitrogen sources'''
The organism was grown in the presence of different sources of nitrogen like, ammonium sulphate, nitrates and nitrites along with yeast extract and its ability to produce ethanol and arabitol was studied. Among them ammonium sulphate served as the best nitrogen source, whereas, in the presence of nitrites and nitrates, the organism failed to metabolize glucose efficiently. Yeast extract proved to be an integral source of amino acids and other vitamins for growth, without which, the organism had low efficiency for its metabolism. <ref name="D. Nepalensis1"></ref>
===''Hanseniaspora''===
Wines fermented with a combination of ''M. pulcherrima'', ''H. uvarum'', ''S. cerevisiae'', and lactic acid bacteria, had a slightly lower ethanol percent, but a higher phenolic acid content and slightly better mouthfeel <ref name="Minnaar_2017">[http://www.jsaa.ac.za/index.php/sajev/article/view/1621 Saccharomyces cerevisiae, Non-Saccharomyces Yeasts and Lactic Acid Bacteria in Sequential Fermentations: Effect on Phenolics and Sensory Attributes of South African Syrah Wines. P.P. Minnaar, H.W. du Plessis, V. Paulsen, N. Ntushelo, N.P. Jolly, M. du Toit. 2017.]</ref>. ''Hanseniaspora osmophilia'' and ''H. valbyensis'' have been found to [https://theconversation.com/alcohol-brewed-from-trees-and-other-fermented-drinks-in-australias-indigenous-history-96127?utm_medium=amptwitter&utm_source=twitter dominate indigenously fermented cider gum sap in Australia, and have been found to tolerate up to 11% ABV and cold temperatures].
Some species of this genus cannot ferment maltose or maltotriose, which make up the majority of sugar in brewer's wort. For example, Bellut et al. (2018) found that one strain each of the species ''H. vineae'' and ''H. valbyensis'' that were both isolated from kombucha could not ferment these complex sugars (including sucrose), but could ferment cellobiose. This is due to the lack of a maltose transporter and the enzyme maltase. As such, they have been proposed as being potentially useful in non-alcoholic beer fermentation. Additionally, these species were able to grow in 7◦ Plato wort with a range of IBU (50 IBU was the maximum IBU tested), indicating that IBU's don't impact the growth of these species. They also lacked the ability to produce phenols. ''H. vineae'' was moderately flocculant, while ''H. valbyensis'' had poor flocculation, with the flocculation depending on the ''FLO'' gene and the presence of calcium in the wort (the same as ''Saccharomyces''). They produced much less higher alcohols (n-propanol, isobutanol, and isoamyl alcohol) than the WLP001 control yeast. ''H. vineae'' produced slightly more ethyl acetate than WLP001 (6 mg/L vs 4.05 mg/L), while ''H. valbyensis'' produced above threshold diacetyl (0.21 mg/L), however, due to the worty taste of the ''Hanseniaspora'' species which didn't highly attenuate the wort, the sensory differences were negligible. Both species of ''Hanseniaspora'' produced lower levels of ethyl formate and about half the amount of acetaldehyde as WLP001 <ref name="Bellut_2018">[http://www.mdpi.com/2311-5637/4/3/66 Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer. Konstantin Bellut, Maximilian Michel, Martin Zarnkow, Mathias Hutzler, Fritz Jacob, David P. De Schutter, Luk Daenen, Kieran M. Lynch, Emanuele Zannini, and Elke K. Arendt. 2018. DOI: https://doi.org/10.3390/fermentation4030066.]</ref>.
A 2020 Portuguese study researched Co-fermentation potential between ''Hanseniaspora'' and other yeast species, and ''Saccharomyces'' (US-05), and found the potential to increase flavour compounds compared to a single-strain Saccharomyces fermentation. ''H. guilliermondii'' IST315 , ''H. opuntiae'' IST408 (Ho) and ''T. delbrueckii'' IST314 were selected as producing the most desirable aroma profile, described as having ‘fruity’, ‘toffee’, and ‘honey’ notes <ref name="Bourbon-Melo_2020">Bourbon-Melo, N., Palma, M., Rocha, M. P., Ferreira, A., Bronze, M. R., Elias, H., & Sá-Correia, I. Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiology, 103678. 2020. DOI: https://doi.org/10.1016/j.fm.2020.103678 </ref>. ''H. guilliermondii'' IST315 is isolated from grapes, namely the "D. Maria grape variety (Achada, Portugal)", while ''H. opuntiae'' IST408 was also isolated from grapes, "D. Maria grape variety (Extremoz, Portugal)".
See also:
* [https://www.youtube.com/channel/UCuoU8fmh-1V5P0ATNq9Z_9w Michael Tonsmeire's brewing video] and [https://www.themadfermentationist.com/2018/05/lactic-acid-yeast-hanseniaspora-and.html?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+TheMadFermentationist+%28The+Mad+Fermentationist%29 blog post].
- https://www.mdpi.com/2311-5637/4/3/76
- https://www.sciencedirect.com/science/article/abs/pii/S074000202100071X
===''Kluyveromyces''===
- https://www.sciencedirect.com/science/article/abs/pii/S0740002022001782
Many species of ''Kluyveromyces'' have been to biotransform monoterpenes found in hop oils (see [[Hops#Hop_Derived_Compounds_In_Beer_and_Biotransformations|Hop Biotransformations]]).
===''Lachancea''===
====''Lachancea thermotolerans''====
Formerly classified as ''Kluyveromyces thermotolerans'' <ref name="Domizio_2016">[http://onlinelibrary.wiley.com/doi/10.1002/jib.362/full Lachancea thermotolerans as an alternative yeast for the production of beer. P.Domizio, J.F.House, C.M.L.Joseph, L.F.Bisson, and C.W.Bamforth. 2016.]</ref>, ''L. thermotolerans'' is a species of yeast that has been found to produce small amounts of lactic acid during fermentation (also known as "lactic acid yeast").
The optimal fermentation range is reported to be between 61-68°F (16-20°C) for one strain that [http://suigenerisbrewing.com/ Bryan of Sui Generis blog] has worked with, 70-72°F (21-22°C) for another strain that DeWayne Schaaf/Justin Amaral have traded on MTF, and 74°F (23°C) for a third strain that Justin Amaral has worked with. Many strains may die at temperatures as low as 84°F (28°C). Some other species of ''Lachancea'' die at 20°C (68°F), hence the species name "''thermotolerans''" <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1859057757455763/?comment_id=1859068620788010&comment_tracking=%7B%22tn%22%3A%22R%22%7D Bryan of Sui Generis Blog and Justin Amaral. Milk The Funk Facebook group post regarding the temperature range for L. thermotolerans. 10/22/2017.]</ref>.
The amount of time needed to ferment wort with ''L. thermotolerans'' appears to be strain dependent. The strain from DeWayne Schaaf, for example, takes around 3 weeks to finish fermenting, and ends up at around 3.7-3.9 pH (not a lot of lactic acid is produced). [http://suigenerisbrewing.com/ Bryan of Sui Generis blog] reported that his strain of ''L. thermotolerans'' takes about 2 weeks to ferment, but the resulting beer improves flavor-wise with a few weeks to months of aging <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1874938162534389/ Justin Amaral and Bryan of Sui Generis blog. Milk The Funk post about the fermentation times for ''Lachancea thermotolerans''. 11/6/2017.]</ref>.
Many other strains have a lower fermentation capacity. Because of this, studies in wine have focused on co-fermentation with ''Saccharomyces'' in order to reduce the pH of the wine and provide fruity ethyl lacate esters <ref>[https://www.academia.edu/20392016/Lachancea_thermotolerans_and_Saccharomyces_cerevisiae_in_simultaneous_and_sequential_co_fermentation_A_strategy_to_enhance_acidity_and_improve_the_overall_quality_of_wine?email_work_card=title Gobbi, Mirko et al. “Lachancea Thermotolerans and Saccharomyces Cerevisiae in Simultaneous and Sequential Co-Fermentation: A Strategy to Enhance Acidity and Improve the Overall Quality of Wine.” Food Microbiology 33.2 (2013): 271–281. Web.]</ref>. This species can also produce acidity in beer fermentation. For example, three strains were tested by Dimizio et al. (2016) for their fermentation characteristics after 21 days of fermentation under different conditions. They found that all three strains fermented maltose at similar levels of ''S. cerevisiae'', but none fermented maltotriose and other studies have tested strains that do not ferment maltose. The ''L. thermotolerans'' strains produced 6-12% less total ethanol than ''S. cerevisiae'', showing that in general that this species has lower attenuation than brewers yeast. All three strains of ''L. thermotolerans'' produced lactic acid, but it took 21 days to achieve maximum lactic acid levels, and only one strain resulted in beers that were at a pH of 3.77 (the other strains produced beers that were at a pH of 4.11 and 4.28, which were similar to the ''S. cerevisiae'' strain that was tested). It was noted that other strains have been reported to produce a pH of 3.6, so the ability of ''L. thermotolerans'' to sour beer is widely dependent on strain. ''L. thermotolerans'' also produced significantly more glycerol than the beer yeast (between 65-75% more at day 21), which demonstrates that this species could be used to improve mouthfeel. Pitching rate didn't greatly affect the amount of lactic acid produced, although the lowest pitching rate tested produced slightly more lactic acid. Repitching up to five generations did not seem to have a great effect on viability and slightly improved its fermentation capability, and they were not noticeably affected by high IBU's (60) or low vs high oxygenation levels. ''L. thermotolerans'' did not have a negative effect on head retention, and behaved similarly to ''S. cerevisiae'' as far as flocculation. Overall, the levels of VDK's and diacetyl were lower than that of the tested strain of ''S. cerevisiae'', however, another study showed that they were higher in wort that was highly saturated with oxygen. The sensory effects of ''L. thermotolerans'' were described as "positive", but the data was not shown in the study. At lower fermentation temperatures (16°C), the tasters described the beer as tasting "fruity, floral, sour, clove, melon, and strawberry". However, in another study of another strain that did not ferment well was described as "yielded strong, unpleasant phenolic aromas, notably 4-ethylphenol." This seems to indicate that ''L. thermotolerans'' generally produces phenols, although phenols were not measured in this study. One strain tested was shown to have higher beta-glucosidase activity, which could indicate that it could aid in the break down [[Glycosides]] in hops or fruit <ref name="Domizio_2016" />.
A study by [https://www.nature.com/articles/s41598-018-33105-7 Hranilovic et al. (2018)] looked at the fermentation profile of 94 strains of ''L. thermotolerans'' from all over the world in Chardonnay grape juice. They found a wider range of fermentation profiles for different strains of this species. They achieved a range of 7.3 to 10.6% ABV, preferring glucose over fructose. Some strains produced extreme levels of glycerol (8.0 g/L) while others produced moderate amounts. 48 of the strains produced more lactic acid than they did glycerol, which is a significant amount of lactic acid, the highest produced being 12 g/L (by comparison, wild ''S. cerevisiae'' strains, in similar conditions normally produce less than 0.4 g/L lactic acid). Some strains didn't produce nearly as much lactic acid though, producing as little as 1.8 g/L. Acetic acid production was insignificant in all strains tested, but they all produced low levels. They found that a wide range of secondary metabolites were produced, including high alcohols (hexanol, phenylethanol, methylbenzenemethanol, isobutanol, isoamyl alcohol, methyl-butanol, methyl-pentanol, ethylhexanol, butanol, nonanol, octanol, and decanol). Some strains produced high levels of hexanol and octanol. Many esters were produced as well, including ethyl propanoate, ethyl octanoate, ethyl decanoate, ethyl 9-decenoate, diethyl succinate, ethyl acetate, isobutyl acetate, isoamyl acetate, 2-phenylethyl acetate, and amyl lactate. Other aromatic compounds were also produced, including aldehydes, ketones, and the terpene citronellol. They found that some groups of strains produced some compounds more than others, indicating a potentially high degree of variability on the flavors produced by different strains of ''L. thermotolerans'' <ref>[https://www.nature.com/articles/s41598-018-33105-7 Ana Hranilovic, Joanna M. Gambetta, Leigh Schmidtke, Paul K. Boss, Paul R. Grbin, Isabelle Masneuf-Pomarede, Marina Bely, Warren Albertin & Vladimir Jiranek. 2018.]</ref>.
See also:
* [https://www.youtube.com/watch?v=ERrI0ktxRp0 "5 Tips for Fermenting with Philly Sour" by Lallemand Brewing on YouTube] and [https://www.crowdcast.io/e/philly-sour-launch Dr. Matthew Farber's webinar].
* [https://www.milkthefunk.live/podcast/2021/2/26/episode-012-dr-bryan-heit-of-sui-generis-brewing-blog-joins-us-to-talk-philly-sour MTF The Podcast episode #012 with Dr. Bryan Heit on Philly Sour]. Also see [http://suigenerisbrewing.com/index.php/2021/02/12/diving-deep-in-to-philly-sour/ his deep dive] blog article on the biology of this product and strategies for repitching it.
* [https://www.facebook.com/groups/MilkTheFunk/permalink/1366829093345301/ Post 1] and [https://www.facebook.com/groups/MilkTheFunk/permalink/1380004022027808/ Post 2] on ''Lachancea thermotolerans'' that can produce significant lactic acid without modification.
* [https://www.facebook.com/groups/MilkTheFunk/permalink/1746164415411765/ MTF thread] on an application from John Sheppard, Robert Dunn, Anne Madden from North Carolina State University to patent pitching this yeast into wort, which prevents other yeast labs from offering any other strains of this species and also prevents brewers from using this species from other sources. [https://www.facebook.com/groups/MilkTheFunk/permalink/1808645679163638/ A follow up post on 09/01/2017] discusses Sheppard and Madden opening a business that claims patent on this yeast, and restricts competing breweries/yeast companies from using it. [https://www.facebook.com/groups/MilkTheFunk/permalink/1933990046629200/ University of Sciences Philidelphia], via Matthew J. Farber's work, is also trying to claim patent on this process.
* [http://sourbeerblog.com/wp-content/uploads/2017/04/Data-From-10-Non-Saccharomyces-Fermentations.pdf Matt MIller's notes on a few species of Lactic Acid Yeast.]
* [http://www.winemakersresearchexchange.com/library/2017/6/6/levulia-alcomeno-aeb-yeast-trial-on-cabernet-franc-2016 Levulia Alcomeno (AEB) Yeast Trial On Cabernet Franc (2016); formerly classified and listed as ''Kluyveromyces thermotolerans''.]
* [https://www.facebook.com/groups/MilkTheFunk/permalink/2872732672754928/ MTF thread by Jeremy Myers on making a saison style beer with Levulia Alcomeno.]
* [https://www.facebook.com/groups/MilkTheFunk/permalink/3724558250905695/ The Yeast Bay trialing two strains of ''L. thermotolerans'', including their process.]
* [https://byo.com/article/alternative-souring-methods-acid-producing-yeast-strains/ "Alternative Souring Methods: Acid-producing yeast strains," by Federico Tondini, BYO Magazine October 2021.]
(To do)
- Bochman et al. (2018) paper: https://www.sciencedirect.com/science/article/pii/S0740002017302952
- Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine: https://www.academia.edu/20392016/Lachancea_thermotolerans_and_Saccharomyces_cerevisiae_in_simultaneous_and_sequential_co_fermentation_A_strategy_to_enhance_acidity_and_improve_the_overall_quality_of_wine?email_work_card=title
- https://www.mdpi.com/2306-5710/9/1/20
- https://www.mdpi.com/2311-5637/10/4/180
====''Lachancea fermentati''====
===''Metschnikowia''===
Wines fermented with a combination of ''M. pulcherrima'', ''H. uvarum'', ''S. cerevisiae'', and lactic acid bacteria, had a slightly lower ethanol percent, but a higher phenolic acid content and slightly better mouthfeel <ref name="Minnaar_2017" />.
https://www.facebook.com/groups/MilkTheFunk/permalink/1862425643785641/
====''Metschnikowia reukaufii''====
* [https://www.facebook.com/groups/MilkTheFunk/permalink/2629290363765828/ Co-fermentation notes on MTF by Nick Impellitteri of The Yeast Bay.]
* [http://scottjanish.com/m-reukaufii-a-nectar-inhabiting-wild-yeast-with-biotransformation-potential-in-hoppy-beer/ "M. Reukaufii, a Nectar-inhabiting Wild Yeast with Biotransformation Potential in Hoppy Beer," by Scott Janish.]
===''Moniliella''===
====''Moniliella megachiliensis''====
[https://www.biorxiv.org/content/10.1101/2021.07.21.453216v1 Bochman et al. (2021)] isolated a strain of this species from the Olympic National Park. With the ability to ferment maltose, it showed some degree of attenuation in DME wort (more than many wild yeasts, but not as high as ''S. cerevisiae''), and is hop tolerant. It was tolerant of low amounts of alcohol up to 6% ABV. It performed better at 34-37°C than at 30°C, suggesting that it prefers warmer temperatures. The flavor profile in beer fermented with this species was characterized as tasting of pleasant esters and bubblegum <ref>[https://www.biorxiv.org/content/10.1101/2021.07.21.453216v1 Isolation of wild yeasts from Olympic National Park and Moniliella megachiliensis ONP131 physiological characterization for beer fermentation Renan Eugênio Araujo Piraine, David Gerald Nickens, David J. Sun, Fábio Pereira Leivas Leite, Matthew L. Bochman. bioRxiv 2021.07.21.453216; doi: https://doi.org/10.1101/2021.07.21.453216.]</ref>.
===''Mrakia''===
====''Mrakia gelida''====
This species has been suggested to be good for low alcohol (~1.5% ABV) beers due to favorable flavor contributions and a lack of off-flavors like diacetyl production <ref>[https://www.sciencedirect.com/science/article/pii/S0740002018303009 Mrakia gelida in brewing process: An innovative production of low alcohol beer using a psychrophilic yeast strain. Giovanni De Francesco, Ciro Sannino, Valeria Sileoni, Ombretta Marconi, Sara Filippucci, Giorgia Tasselli, Benedetta Turchetti. 2018. DOI: https://doi.org/10.1016/j.fm.2018.06.018.]</ref>.
===''Pichia''===
[[File:Pichia.png|thumb|Pichia membranaefaciens; photo by [https://www.researchgate.net/figure/278707172_fig3_Figure-8-08-Pichia-membranaefaciens-a-colonies-on-MEA-7-d-25C-bar-2-mm-b Pitt and Hocking, 2009.].]]
''Pichia'' is a genus of yeasts in the family Saccharomycetaceae with spherical, elliptical, or oblong cells. ''Pichia'' is a teleomorph, and forms hat-shaped, hemispherical, or round ascospores during reproduction. The anamorphs of some ''Pichia'' species are ''Candida'' species. The asexual reproduction is by multilateral budding. ''Pichia'' can be prolific pellicle-forming yeasts. <ref name="Pichia wiki">[https://en.wikipedia.org/wiki/Pichia . Wikipedia, Obtained 8/1/17]</ref> Many species of ''Pichia'' have been to biotransform monoterpenes found in hop oils (see [[Hops#Hop_Derived_Compounds_In_Beer_and_Biotransformations|Hop Biotransformations]]).
Some species of ''Pichia'' can produce exopolysaccharides (EPS), which are extracellular (produced and expelled outside of the cell) polymers of monosaccharides connected by glycosidic bonds with a degree of polymerization higher than 10. EPS assists in producing biofilms for microorganisms. It is possible that EPS from yeast could make beer "ropy" or "sick", similar to [[Pediococcus]] <ref name="Gientka_2015" /><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2465980936763439/ Zach Taggart. Milk the Funk Facebook group post on EPS from yeast. 01/16/2019.]</ref>.
[[File:Pichiakpellicle.jpg|thumb|Pichia kudriavzevii pellicle; photo by Dr Matt Bochman [https://www.facebook.com/539527212902201/photos/a.686127604908827.1073741828.539527212902201/686127568242164/?type=1&theater ].]]
====''Pichia kluyveri''====
Proposed to be useful in the production of non-alcoholic beer. See [https://www.facebook.com/groups/MilkTheFunk/permalink/2336842936343907/ this MTF thread] on suspecting this yeast to be the one used in a recent Mikkeller [https://blog.mikkeller.dk/mikkeller-launches-a-new-style-of-alcohol-free-beer?fbclid=IwAR2LfBxi-1YyrMYXuhR8BIauCjcxWNOW2-L8HBu0m5BB-q3i77-j74w4Dm4 non-alcoholic beer called "Henry and His Science"]. See also this [https://www.masterbrewerspodcast.com/272 MBAA Podcast on brewing NA beer at Sam Adams].
* [https://www.facebook.com/groups/MilkTheFunk/permalink/2745933662101497/ This MTF thread by Brendan Pleskow] explores the possibility of producing significant ethanol with this species using BSG Amylo™ enzyme.
* [https://www.chr-hansen.com/en/food-cultures-and-enzymes/fermented-beverages/cards/product-cards/frootzen-first-ever-pichia-kluyveri-yeast Chr Hansen Frootzen® is claimed to be a high thiol producer.]
* [https://beersmith.com/blog/2023/02/28/non-alcoholic-beer-and-yeast-with-janish-and-carlsen-beersmith-podcast-276/ Non Alcoholic Beer and Yeast with Janish and Carlsen – BeerSmith Podcast #276.]
====''Pichia kudriavzevii''====
''P. kudriavzevii'' is a very abundant yeast found in soil, fruits, and various fermented beverages. It is ovoid to elongate in shape. So far, ''P. kudriavzevii'' is mainly associated with food spoilage to cause surface biofilms in low pH products. It is also known for known for creating a very heavy pellicle. <ref name="pichia k1">[https://eurekabrewing.wordpress.com/2014/02/16/hello-my-name-is-pichia-kudriavzevii/ . Pichia k Info. Source: Eureka Brewing Blog.]</ref>
'''Sugar Utilization'''
''P. kudriavzevii'' can mainly metabolize glucose making it a non-viable strain for primary fermentations. During trials it was unable to metabolize galactose, sucrose, maltose, lactose, raffinose, and trehalose. <ref name="pichia k1"></ref> Interestingly, some strains of ''P. kudriavzevii'' can metabolize pentose sugars such as xylose <ref name ="P. kudriavzevii xylose">[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485917/ Genome Sequence of Pichia kudriavzevii M12, a Potential Producer of Bioethanol and Phytase.]</ref>.
====''Pichia apotheca''====
''Pichia apotheca'' is a new hybrid species of ''Pichia'' which was identified in 2017. <ref name="pichia a">[http://www.biorxiv.org/content/biorxiv/early/2017/06/15/150722.full.pdf . Identification of Pichia apotheca. Authors: Caiti Smukowski Heil, Joshua N. Burton, Ivan Liachko, Anne Friedrich, Noah A. Hanson, Cody L. Morris, Joseph Schacherer, Jay Shendure, James H. Thomas, Maitreya J. Dunham. 2017.]</ref> ''Pichia apotheca'' was identified as a hybrid of ''Pichia membranifaciens'' and another unidentified species of ''Pichia''.
=====Characterization=====
====''Toluraspora DelbrueckiiPichia membranifaciens''==== ====''Pichia anomala''==== ===''Schizosaccharomyces''=== ''Schizosaccharomyces'' is a genus of fission yeasts. The most well-studied species is ''S. pombe''. At present four ''Schizosaccharomyces'' species have been described (''S. pombe, S. japonicus, S. octosporus and S. cryophilus''). Like the distantly related ''Saccharomyces cerevisiae'', ''Schizosaccharomyces'' is a significant model organism in the study of eukaryotic cell biology. It is particularly useful in evolutionary studies because it is thought to have diverged from the ''Saccharomyces cerevisiae'' lineage between 300 million and 1 billion years ago, and thus provides an evolutionary distant comparison. ====''Schizosaccharomyces japonicus''====See also:* [https://www.facebook.com/groups/MilkTheFunk/permalink/1457271340967742/ Justin Amaral's experiencing using ''S. japonicus''.]* [https://www.facebook.com/groups/MilkTheFunk/permalink/3703774669650720/ Cory Widmayer's review of fermentation science on ''S. japonicus'' and ''S. pombe'' in molasses and rum fermentation.] ====''Schizosaccharomyces pombe''====[[File:S Pombe.jpg|thumb|''S. pombe''; photo from Wikipedia [https://en.wikipedia.org/wiki/Schizosaccharomyces_pombe ].]] The fission yeast ''S. pombe'' is a unicellular eukaryote <ref>[https://en.wikipedia.org/wiki/Eukaryote Eukaryote Wiki. Retrieved 10/12/2017.]</ref> that is rod shaped. They measure approximately 2 to 3 microns in diameter and 7 to 14 microns in length. ''S. pombe'' is usually found in sugar-containing fermentations of alcohol from subtropical regions. Even though its origin dates back to quite a long time ago, it was not widely known before the 1890’s. It was discovered in 1893 when a group working in a Brewery Association Laboratory in Germany was looking at sediment found in millet beer imported from East Africa that gave it an unsavory acidic taste. P. Lindner was the first to describe ''Schizosaccharomyces pombe''. He chose as its epithet the Swahili word for beer, pombe. It was identified as yeast, and it became known as the fission yeast because it reproduces by means of fission unlike its relative ''Saccharomyces cerevisiae''. The name ''Schizosaccharomyces'' was assigned to it because "Schizo-" means "split" <ref>[https://www.merriam-webster.com/dictionary/schizo- "SChizo-" Merriam-Webster.com. Retrieved 04/21/2021.]</ref>, which had been previously used to describe other fission species. <ref>[https://microbewiki.kenyon.edu/index.php/Schizosaccharomyces_pombe#Classification S. pombe Micro Wiki. Retrieved 10/12/2017.]</ref> Dr. Matt Bochman has experimented fermenting beer with some strains of ''S pombe''. He reported that a lot of sulfurous compounds were produced, but this could have been just his strains or his fermentation conditions <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1894065993954939/?comment_id=1897694636925408&comment_tracking=%7B%22tn%22%3A%22R%22%7D Matt Bochman. Milk The Funk Facebook thread on ''S. pombe''. 11/27/2017.]</ref>. See also:* [https://www.facebook.com/groups/MilkTheFunk/permalink/4274824649212383/ "The Past and Future of ''S. pombe'' in Fermentation," MTF post by Cory Widmayer giving an overview of ''S. pombe'' in alcoholic fermentation (leading up to experimentation on reducing sulfur and acetate production for non-distillation fermentation).]* [https://www.facebook.com/groups/MilkTheFunk/permalink/3361360907225433/ MTF write ups by Cory Widmayer of the fermentation process for traditional Jamaican rum, with an emphasis on aromatic mold (''Thielaviopsis ethacetica'') and ''Schizosaccharomyces pombe''.]* [https://www.facebook.com/groups/592560317438853/?multi_permalinks=4925298390831669 MTF post by Cory Widmayer on isolation and identification techniques for ''S. pombe''.]* [https://www.facebook.com/groups/MilkTheFunk/posts/5842191532475679/ Cory Widmayer's experiments and guide brewing beer with ''S. pombe'' (see comments for links to Cory's other threads).]* [https://www.facebook.com/groups/MilkTheFunk/posts/7179325622095590/ Cory Widmayer's first attempt at using ''S. pombe'' to make whiskey.] ===''Torulaspora delbrueckii''===[[File:aaaaaa.jpg|thumb|''Tolurspora delbrueckii''; photo by [https://fermentationstations.wordpress.com/2016/09/26/candida-milleri-stiven-mita/ ].]] - to review: http://www.mdpi.com/2311-5637/4/2/22 - https://www.ncbi.nlm.nih.gov/pubmed/29492641 - https://www.facebook.com/groups/MilkTheFunk/permalink/2037872376240966/ - https://www.tandfonline.com/doi/abs/10.1080/03610470.2021.2025327 ''Torulaspora delbrueckii'' is species of yeast, that is round to ovoid in shape and has been traditionally used in some wine fermentations to increase the complexity. Most of the commercial ''Torulaspora '' species and strains were isolated from soil, fermenting grapes (wine), berries, agave juice, tea-beer, apple juice, leaf of mangrove a tree, moss, lemonade and tree barks. Although it was said that most ''T Delbrueckii. delbrueckii'' strains would not fully attenuate or tolerate higher alcohol contents it has been shown that this property is strain -dependent.
====General Information====
<ref name="10 strain TD">[http://onlinelibrary.wiley.com/doi/10.1002/yea.3146/full . Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Maximilian Michel, Jana Kopecká. 2016.]</ref>
{| class="wikitable sortable"
|-
! Designation <ref name="10 strain TD"></ref> !! Strain number/signature !! Origin
|-
| T6 || RIBMa TdA || Wine
|-
|}
See also:
* [http://thebrulab.libsyn.com/episode-065-cold-contact-fermentation-with-t-delbrueckii-w-dr-brian-gibson Bru Lab Podcast Episode 065 | Cold Contact Fermentation With T. Delbrueckii w/ Dr. Brian Gibson.]
* [https://www.masterbrewerspodcast.com/272 MBAA Podcast on brewing NA beer at Sam Adams].
=====Hop Resistance=====
The resistance to alpha acids were also measured among these 10 strains using 0 PPM, 50 PPM, and 90 PPM. All strains were found to be resistant to these levels of alpha acids not affecting their growth. Some strains however were shown to have slower growth rates in the presence of 90 PPM and more. <ref name="10 strain TD"></ref>. One strain of ''Torulaspora delbrueckii'' was found to biotransform monoterpenes from hop oils (see [[Hops#Hop_Derived_Compounds_In_Beer_and_Biotransformations|Hop Biotransformations]]). Bellut et al. (2018) found that IBU's up to 50 had no impact on the growth of the strain of ''T. delbruekii'' that they tested, but they did not test the growth of this strain in wort above 50 IBU <ref name="Bellut_2018" />.
=====Ethanol Resistance=====
=====Sugar Utilization=====
During fermentation trials of these 10 strains mentioned, sugar content was measured both before and after fermentation via HPLC. Tests showed the the sugar utilization of ''T Delbruekii. delbruekii'' is very strain dependent. However all All but one of the strains but one were shown to not ferment Maltose maltose and Maltotriosemaltotriose. Although these tests do not show if these strains are able to utilize Lactoselactose, Eureka Brewing's blog mentions that they are unable to metabolize it.<ref name="EurekaTD">[https://eurekabrewing.wordpress.com/2014/02/10/hello-my-name-is-torulaspora-delbrueckii/. Eureka's Blog post about T. Delbruecki, 02/10/2014 .]</ref> The table below shows the percentages of sugars metabolized in the test wort by each strain. <ref name="10 strain TD"></ref>
{| class="wikitable"
|-
|}
Bellut et al. (2018) found that a strain of ''T. delbruekii'' isolated from kombucha could ferment glucose, fructose, sucrose, melibiose, and raffinose, but could not ferment maltose, maltotriose, or cellobiose <ref name="Bellut_2018" />.
=====Cross Resistance=====
|}
===''Wickerhamomyces''==Flavor Compounds== ===Bellut et al. (2018) found that a strain of ''LachanceaT. delbruekii''isolated from kombucha produced much less higher alcohols than WLP001 (n-propanol, isobutanol, and isoamyl alcohol) and also much lower esters, but slightly higher diacetyl and acetaldehyde. It also did not produce phenols and had moderate flocculation <ref name==="Bellut_2018" />.
=====MTF Threads=====* [[Filehttps:Pichia//www.facebook.com/groups/MilkTheFunk/permalink/2804680779560118/ Starter/propagation tips for homebrewers/small brewers.png|thumb|Pichia Membranaefaciens; photo by ]* [https://www.researchgatefacebook.netcom/groups/figureMilkTheFunk/278707172_fig3_Figure-8-08-Pichia-membranaefaciens-a-colonies-on-MEA-7-d-25C-bar-2-mm-b ]permalink/3723670497661137/ Experiences using White Labs WLP603.]]
===''PichiaWickerhamomyces''spp.===
Some species can produce lactic acid. One strain of ''PichiaWickerhamomyces anomalus'' is isolated from a genus distillery was found to produce significant levels of yeasts in the family Saccharomycetaceae with spherical, elliptical, or oblong acuminate cellsethanol and is ethanol tolerant. Pichia is a teleomorph Another isolate attenuated wort 83% of wort, and forms hat-shapedwas reported to ferment maltotriose, hemispherical, or round ascospores during reproduction. The anamorphs of some Pichia species are Candida which is very rare for yeast speciesother than ''S. The asexual reproduction is by multilateral budding. cerevisiae'' <ref name="Pichia wikiCubillos_2019">[https://enonlinelibrary.wikipediawiley.orgcom/doi/wiki10.1002/Pichia yea.3380 Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers. F.A. Cubillos, B. Gibson, N. Grijalva‐Vallejos, K. WikipediaKrogerus, Obtained 8J. Nikulin. 2019. DOI: https://doi.org/110.1002/17yea.3380.]</ref>
===''Pichia KZygosaccharomyces'' is a very abundant yeast found in soil, fruits, and various fermented beveragesspp. It is ovoid to elongate in shape. So far, P. kudriavzevii is mainly associated with food spoilage to cause surface biofilms in low pH products===[[File:Zygosaccharomyces. jpg|thumb|''Pichia KZygosaccharomyces rouxii'' is also classified as an infectious yeast species. It is also known for known for creating a very heavy pellicle. <ref name="pichia k1">; photo by [httpshttp://eurekabrewingmicrobialfoods.wordpress.com/2014/02org/16/hello-my-namemicrobe-isguide-pichiazygosaccharomyces-kudriavzeviirouxii/ Microbial Foods. Pichia K Info. Source: Eureka Brewing Blogorg].]</ref>]
''Zygosaccharomyces'Sugar Utilization'spp. belongs to the group of hemiascomycetous (class of fungi in which no ascocarps are formed) yeasts with a high tolerance to osmotic stress. This typical feature enables it to grow in environments with high concentrations of salts and/or sugars, i.e. under conditions restrictive to most other yeast species. ''Z. bailii'', ''Z. bisporous'', ''Z. rouxii'', and ''Z. florentinus'' are species which have been isolated in grape musts or wine. Some strains can be very tolerant to a wide range of stressors, including 50% sugar, 2.5% acetic acid, 18% ethanol, and pH 2.0. It is also resistant to preservatives commonly used in beverage production such as SO<sub>2</sub>. They are commonly mentioned as part of the "Flor" present in Sherry wines.
====''Pichia KZygosaccharomyces parabailii'' can mainly metabolize glucose making it a non viable strain for solo fermentations. During trials it was unable to metabolize Galactose, Sucrose, Maltose, Lactose, Raffinose, and Trehalose. <ref name="pichia k1"></ref>===
====''Pichia ApotecaZygosaccharomyces bailii'' is a new genus of ''Pichia'' which was identified in 2017. <ref name="pichia a">[http://www.biorxiv.org/content/biorxiv/early/2017/06/15/150722.full.pdf . Identification of Pichia Apotheca. Authors: Caiti Smukowski Heil, Joshua N. Burton, Ivan Liachko, Anne Friedrich, Noah A. Hanson, Cody L. Morris, Joseph Schacherer, Jay Shendure, James H. Thomas, Maitreya J. Dunham. 2017.]</ref> ''Pichia A'' was identified as a hybrid of ''Pichia Membranifaciens'' and another unidentified species of ''Pichia''. ===
Some species of this genus cannot ferment maltose or maltotriose, which make up the majority of sugar in brewer's wort. For example, Bellut et al. (2018) found that one strain that was isolated from kombucha could not ferment these complex sugars. This is due to the lack of a maltose transporter and the enzyme maltase. It also could not ferment melibiose, raffinose, or cellobiose, but could ferment glucose, fructose, and sucrose. As such, they have been proposed as being potentially useful in non-alcoholic beer fermentation. Additionally, these species were able to grow in 7◦ Plato wort with a range of IBU (50 IBU was the maximum IBU tested), indicating that IBU's don't impact the growth of these species. They also lacked the ability to produce phenols. It was described as moderately flocculant, with the flocculation depending on the ''FLO'' gene and the presence of calcium in the wort (the same as ''Saccharomyces''). They produced much less higher alcohols (n-propanol, isobutanol, and isoamyl alcohol) than the WLP001 control yeast and fewer esters, acetaldehyde, and diacetyl than WLP001 <ref name=====Characterization====="Bellut_2018" />.
====''DebaryomycesZygosaccharomyces rouxii'' is a genus of yeast <ref>[https://en.wikipedia.org/wiki/Debaryomyces Wikipedia. Debaryomyces. Retrieved 09/03/2015.]</ref>. The non-pathogenic species ''D. hansenii'' is commonly found in cheese, and is an osmotolerant, halotolerant, and xerotolerant (tolerant high amounts of salt and sugar, and low amounts of water) <ref>[https://en.wikipedia.org/wiki/Debaryomyces_hansenii Wikipedia. Debaryomyces hansenii. Retrieved 09/03/2015.]</ref>. ====
====Debaryomyces Hansenii==Bacteria==
===''D HanseniiLeuconostoc'' is the most prevalent yeast in dairy and meat products as well as early stages of soy sauce fermentation. Various isolates exist originating from cheese, sake moto, edomiso, rennet, psoriasis, infected hands and salmon. In general, ''D. hansenii'' can be found in habitats with low water activity as well as in products with high sugar concentrations. Although ''D. hansenii'' is considered a non-pathogenic yeast, various clinical cases of ''D. hansenii'' exist.===
''Leuconostoc'' is a genus of Gram-positive bacteria, placed within the family of ''Leuconostocaceae''. They are generally ovoid cocci often forming chains. ''Leuconostoc'' spp. are intrinsically resistant to vancomycin and are catalase-negative (which distinguishes them from staphylococci). All species within this genus are heterofermentative and are able to produce Leuconostocfrom sucrose. They generally form exopolysaccharide. <ref name==Bacteria=="Leuconostocwiki">[https://en.wikipedia.org/wiki/Leuconostoc .]</ref>* [[Cider#Microbes|Malolactic Fermentation]]
===''Oenococcus''===
''Oenococcus'' is a genus of Gram-positive bacteria, placed within the family ''Leuconostocaceae''. The only species in the genus was ''Oenococcus oeni'' (which was known as ''Leuconostoc oeni'' until 1995). In 2006, the species ''Oenococcus kitaharae'' was identified. As its name implies, ''Oenococcus oeni'' holds major importance in the field of oenology(the science and study of wine and winemaking), where it is the primary bacterium involved in completing the malolactic fermentation. <ref name="Oenococcuswiki">[https://en.wikipedia.org/wiki/Oenococcus .]</ref>
====''Oenococcus Kitaharaekitaharae''====
''O. kitaharae'' is a lactic acid bacterium (LAB) that was isolated from composting distilled shochu residue produced in Japan. This species represents only the second member of the genus ''Oenococcus'' to be identified. ''O. kitaharae'' has the ability to ferment maltose, citrate and malate and the ability to synthesize specific amino acids such as L-arginine and L-histidine unlike some ''O. Oeni''. In addition to these metabolic differences, the ''O. kitaharae'' genome also encodes many proteins involved in defense against both bacteriophage (restriction-modification and [https://en.wikipedia.org/wiki/CRISPR CRISPR]) and other microorganisms (bacteriocins), and has had its genome populated by at least two conjugative [https://en.wikipedia.org/wiki/Transposable_element transposons], which is in contrast to currently available genome sequences of ''O. oeni'' which lack the vast majority of these defense proteins. It therefore appears that the genome of ''O. kitaharae'' has been shaped by its need to survive in a competitive growth environment that is vastly different from that encountered by ''O. oeni'', where environmental stresses provide the greatest challenge to growth and reproduction. <ref name="IdentificationofOK">[http://www.microbiologyresearch.org/docserver/fulltext/ijsem/56/10/2345.pdf?expires=1500421799&id=id&accname=guest&checksum=4FF9F1182BE36F4DF3395E34D812B03C. Identifcation of O. Kitaharae, Authors: Akihito Endo1, Sanae Okada1 10/1/2006 .]</ref>
'''Sugar Utilization ''' -
One of the defining biochemical differences between ''O. kitaharae'' and ''O. oeni'' that was noted in its original isolation was the ability of ''O. kitaharae'' to produce acid from maltose. This trait is rare in ''O. oeni'', which is formally classified as maltose negative. By comparing available whole-genome annotations for ''O. oeni'' with ''O. kitaharae'', it was possible to identify several genes associated with sugar utilization that are deferentially present across the species. Of these, at least four genes which are present in ''O. kitaharae'', but absent in the ''O. oeni'' genomes, are predicted to be involved in the utilization of maltose, providing a direct genetic basis for this phenotype. In addition to genes predicted to be involved in the species-specific utilization of maltose, there are several [https://en.wikipedia.org/wiki/Open_reading_frame ORFs] predicted to be involved in the metabolism of trehalose, D-gluconate, D-ribose and fructose that are specifically present in ''O. kitaharae''. While the assimilation of these sugars is often carried out by specific strains of ''O. oeni'', this genotypic data agrees well with biochemical tests performed previously that indicated that ''O. kitaharae'' was able to utilize all of these various carbon sources. <ref name="link">[http://journals.plos.org/plosone/article/authors?id=10.1371/journal.pone.0029626 . Functional Divergence in the Genus Oenococcus as Predicted by Genome Sequencing of the Newly-Described Species, Oenococcus kitaharae, Authors Anthony R. Borneman, Jane M. McCarthy, Paul J. Chambers, Eveline J. Bartowsky 01/3/2012 .]</ref>
====''Oenococcus oeni''====
https://www.academia.edu/27927068/Evidence_for_exopolysaccharide_production_by_Oenococcus_oeni_strains_isolated_from_non_ropy_wines?email_work_card=title
''Oenococcus oeni''(also know as ''Leuconostoc oeni'') is a Genus of Gram-positive LAB, ellipsoidal to spherical in shape that is primarily used in Malolactic Fermentation. ''Oenococcus oeni'' is a facultative anaerobe. It is able to use oxygen for cellular respiration but can also gain energy through fermentation. It characteristically grows well in the environments of wine, being able to survive in acidic conditions below pH 3.0 and tolerant of ethanol levels above 10%. Optimal growth occurs on sugar and protein rich media. Cells tend to grow in chains or pairs. ''O. Oeni'' is heterofermentative and generally produces CO2, Ethanol, Acetate, and Diacetyl. <ref name="MicrobeWikiOO">[https://microbewiki.kenyon.edu/index.php/Oenococcus_oeni "Oenococcus oeni". Microbe Wiki. Retrieved 07/20/2017.]</ref>
''O. oeni'' can decarboxylate L-malate to L(+)-lactate, but cannot use it as a sole source of carbon. It requires the amino acids Glutamic acid, valine, guanine, adenine, xanthine, uracil, riboflavin, folic acid, nicotinic acid, thiamine, biotine and pantothenic acid. There is some variation of amino acid requirement between strains. <ref name="UCDavisOO">[http://wineserver.ucdavis.edu/industry/enology/winemicro/winebacteria/oenococcus_oeni.html . UC Davis General Info on O. Oeni (No Date Given) .]</ref>
Althought ''O. Oenioeni'' has primarily been used for Malolactic Fermentation, trials with the White Labs culture(only one reported on so far) has show lactic acid production without the presence of malic acid. James Sites reported souring within a week at 70°F. <ref name="post">[https://www.facebook.com/groups/MilkTheFunk/permalink/1121887807839432/ James Site. Milk The Funk Facebook group. 08/04/2015.]</ref> This species can also produce exopolysaccharides (EPS) similar to [[Pediococcus]], but in most wines the levels of EPS do not make wine ropy <ref>[https://www.academia.edu/27927068/Evidence_for_exopolysaccharide_production_by_Oenococcus_oeni_strains_isolated_from_non_ropy_wines?email_work_card=title Ciezack, G. et al. “Evidence for Exopolysaccharide Production by Oenococcus Oeni Strains Isolated from Non-Ropy Wines.” Journal of Applied Microbiology 108.2 (2010): 499–509. Web.]</ref>.
{| class="wikitable sortable"
===''Weisella''===
See also:
* [[Grain#Malt_Inoculated_Wort|Malt Inoculated Wort(''W. cibaria'')]] ===''Zymomonas mobilis''===[[File:Zmobilis.png|thumb|''Zymomonas mobilis''; photo by [https://jgi.doe.gov/why-sequence-zymomonas-mobilis-transcriptomes-and-resequencing-z-mobilis-industrial-strain-zm4/ ].]] ''Zymomonas mobilis'' is a Gram negative, facultative anaerobic, non-sporulating, polarly-flagellated, rod-shaped bacterium. It is the only species found in the genus ''Zymomonas''. It has notable bioethanol-producing capabilities, which surpass yeast in some aspects. It was originally isolated from alcoholic beverages like the African palm wine, the Mexican pulque, and also as a contaminant of cider and beer.<ref name="Zymomonaswiki">[https://en.wikipedia.org/wiki/Zymomonas_mobilis Zymomonas mobilis .]</ref> ==About Health Concerns==* [http://suigenerisbrewing.com/index.php/2017/01/05/fact-of-fiction-can-pathogens-survive-in-beer-the-rdwhahb-edition/ "Fact or Fiction: Can Pathogens Survive in Beer"] and [https://www.facebook.com/groups/MilkTheFunk/permalink/1975170752511129/ associated MTF thread].* [[Wild_Yeast_Isolation#Safety|Wild Yeast Isolation and Safety]]. ==Potential references== - Fermentation of cellobiose/glycosides https://www.ncbi.nlm.nih.gov/pmc/articles/PMC241500/ - https://onlinelibrary.wiley.com/doi/full/10.1002/jib.381?fbclid=IwAR1lBJsgLnyftqiYef9nJ5nNHAkaHCm64RFFLq-hrWapuSYLRghR8GOl22Y - http://beer.suregork.com/wp-content/uploads/2015/06/Poster-89.pdf - Bioflavoring by non-conventional yeasts in sequential beer fermentations http://www.sciencedirect.com/science/article/pii/S0740002017303763 and [https://www.facebook.com/groups/MilkTheFunk/permalink/1887724401255765/ MTF comments] - Bochman's published article on lactic acid producing yeast: http://www.sciencedirect.com/science/article/pii/S0740002017302952 - Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production (http://onlinelibrary.wiley.com/doi/10.1111/1751-7915.12717/epdf) - See Fig3B - Fugelsang K, Edwards C. Wine Microbiology. 1997. Available: http://link.springer.com/content/pdf/10.1007/978-0-387-33349-6.pdf - https://www.facebook.com/groups/MilkTheFunk/permalink/1336235339738010/?comment_id=1336277939733750&comment_tracking=%7B%22tn%22%3A%22R%22%7D - https://www.facebook.com/groups/MilkTheFunk/permalink/1337089182985959/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1346900285338182/ - http://www.sciencedirect.com/science/article/pii/S0963996916302332 - https://www.facebook.com/groups/MilkTheFunk/permalink/1366829093345301/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1365795896781954/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1380004022027808/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1284664904895054/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1400174630010747/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1420821137946096/ - http://www.sciencedirect.com/science/article/pii/S074000201630452X - https://www.facebook.com/groups/MilkTheFunk/permalink/1457271340967742/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1485339661494243/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1140282595999953/ - https://www.ncbi.nlm.nih.gov/pubmed/12102552 - https://www.facebook.com/groups/MilkTheFunk/permalink/1546044102090465/ - http://beer.suregork.com/?p=3860 - http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001607 - https://www.facebook.com/groups/MilkTheFunk/permalink/1582089058485969/ - http://www.mbaa.com/publications/tq/tqPastIssues/2017/Pages/TQ-54-1-0215-01.aspx - http://biorxiv.org/content/early/2017/03/27/121103 - https://www.facebook.com/groups/MilkTheFunk/permalink/1640324282662446/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1659004047461136/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1669790909715783/ - http://onlinelibrary.wiley.com/doi/10.1002/jib.381/full - http://www.asbcnet.org/publications/journal/vol/2017/Pages/ASBCJ-2017-2532-01.aspx - https://www.facebook.com/groups/MilkTheFunk/permalink/1680093658685508/ - http://onlinelibrary.wiley.com/doi/10.1002/yea.3146/abstract - https://mail.google.com/mail/u/1/?ui=2&ik=1b8e47c65b&view=att&th=15c548b66cda8ae6&attid=0.1&disp=safe&zw - https://www.facebook.com/groups/MilkTheFunk/permalink/1649825158379025/ - Pichia - http://www.sciencemag.org/news/2017/07/microbe-new-science-found-self-fermented-beer - Sherry Flor - https://www.facebook.com/groups/MilkTheFunk/permalink/1099692053392341/
==See Also==
* [[Acetobacter]]
* [[Pellicle]]
* [[Mead]]
===External Resources===
* [http://wwwwineserver.milkthefunkucdavis.edu/industry/enology/winemicro/wineyeast/saccharomyces_cerevisiae.html UC Davis list and characterization of many yeasts and molds found in winemaking.]* [http://laboratoryresearch.blogspot.com Example link/2008/07/yeasts-and-yeastlike-fungi.html?m=1 "Yeasts and Yeastlike Fungi", an overview of yeast groups and classification.]
==References==
<references/>
[[Category:Bacteria]][[Category:Yeast]]