Changes

Jump to: navigation, search

Brettanomyces

479 bytes added, 16:31, 1 October 2023
no edit summary
Beta-glucosidases can break down the beta-glycosidic bond in disaccharides (cellulose, cellobiose, and gentiobiose) <ref name="ucdavis_chemwiki">[http://chemwiki.ucdavis.edu/Core/Organic_Chemistry/Carbohydrates/Disaccharides "Disaccharides." UC Davis Chemwiki. Retrieved 05/15/2016.]</ref><ref name="smith_divol_2016"></ref>, as well as glycosides. Glycosides are sugar molecules connected to other organic compounds such as acids, alcohols, and aldehydes which are flavor and aroma inactive due to the sugar molecule attached. By cleaving off the sugar molecule through beta-glucosidase activity, ''Brettanomyces'' species can liberate these compounds (called aglycones) into their aroma-active and flavor-active states, or states that may become flavor and aroma active through further modification <ref>Daenen et al., 2008. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers. FEMS Yeast Res. 8, 1103-1114.</ref>. Therefore some ''Brettanomyces'' strains are believed to be able to produce novel flavors and aromas from hops, fruits, and fruit pits that ''Saccharomyces'' yeasts cannot produce. In addition, the liberated aroma and flavor active compounds may be further processed by ''Brettanomyces'' through ester production or destruction pathways. See [[Brettanomyces#Glycosides_and_Beta-Glucosidase_Activity|Beta-Glucosidase Activity]] for more information.
There is a highly genetic diversity between strains of ''Brettanomyces'' species, both in a [http://www.diffen.com/difference/Genotype_vs_Phenotype genotypic and phenotypic] sense <ref name="Crauwels1">[http://link.springer.com/article/10.1007/s00253-015-6769-9 Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains. S. Crauwels, A. Van Assche, R. de Jonge, A. R. Borneman, C. Verreth, P. Troels, G. De Samblanx, K. Marchal, Y. Van de Peer, K. A. Willems, K. J. Verstrepen, C. D. Curtin, B. Lievens. 2015]</ref>. Not all species are capable of consuming the same types of sugars. For example, ''B. anomalus'' (aka claussenii) are generally able to ferment lactose, but ''B. bruxellensis'' is generally not. Different strains within the same species may not be able to ferment the same types of sugars <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1279884332039778/ Lance Shaner experiment comparing the growth of various ''Brettanomyces spp'' on different growth mediums. 04/07/2016.]</ref><ref name="ncyc_searchbrett">[https://catalogue.ncyc.co.uk/catalogsearch/result/?q=brettanomyces National Collection of Yeast Cultures. Search for ''Brettanomyces''. Retrieved 04/07/2016.]</ref>. For example, some strains are not able to ferment maltose (often ''B. anomalus'' strains), which is almost half the sugar content of wort <ref>[https://eurekabrewing.wordpress.com/tag/sugar/ "Sugar composition of wort". Eureka Brewing Blog. Jan 13, 2015. Retrieved 04/07/2016.]</ref><ref>[https://www.pnas.org/doi/abs/10.1073/pnas.1105430108 Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Diego Libkind, Chris Todd Hittinger, Elisabete Valério, Carla Gonçalves, Jim Dover, Mark Johnston, Paula Gonçalves, and José Paulo Sampaio. DOI: https://doi.org/10.1073/pnas.1105430108. 2011.] See also [https://www.facebook.com/groups/MilkTheFunk/posts/7415625611798922/?comment_id=7427190037309146 this MTF thread]</ref>. Such strains would not be a good choice for [[100%25_Brettanomyces_Fermentation|100% ''Brettanomyces'' fermentation]].
The ability of a given ''Brettanomyces'' strain to ferment different types of sugars might be at least partially linked to its source of isolation. For example, in one study a strain of ''B. bruxellensis'' isolated from a soft drink could not ferment the disaccharides maltose, turanose, or the trisaccharide melezitose, whereas all of the other ''B. bruxellensis'' strains isolated from beer and wine could ferment these disaccharides/trisaccharide. The beer strains, however, were unable to ferment cellobiose or gentiobiose, as well as arbutin and methyl-glucoside. The wine strains were able to ferment these disaccharides, perhaps because they were adapted to the environment in which they were isolated (wine barrels). Further studies are needed to see if this is a trend throughout the species <ref name="Crauwels1"></ref>. Daenen et al. (2007) found that none of the ''B. bruxellensis'' strains isolated from lambic that they tested could utilize cellobiose (see [[Brettanomyces#Glycosides_and_Beta-Glucosidase_Activity|glycosides]] below). This data point challenges the belief that ''Brettanomyces'' lives in wooden barrels because it is able to consume the cellobiose of the wood. A study by Tyrawa et al. from [[Escarpment Laboratories]] agreed that wine isolated strains were generally better at fermenting cellobiose than strains isolated from beer at 15°C (59°F), however at 22.5°C (72.5°F) some of the beer strains started to utilize cellobiose, indicating that temperature plays a role in whether ''Brettanomyces'' can ferment certain sugars <ref name="Tyrawa_2017">[https://onlinelibrary.wiley.com/doi/abs/10.1002/jib.565 The temperature dependent functionality of Brettanomyces bruxellensis strains in wort fermentations. Caroline Tyrawa Richard Preiss Meagan Armstrong George van der Merwe. 2019. DOI: https://doi.org/10.1002/jib.565.]

Navigation menu