Changes

Jump to: navigation, search

Brettanomyces

1,518 bytes added, 19:04, 31 July 2017
updating Tyrawa poster
Currently, research into how well ''Brettanomyces'' strains ferment the trisaccharide maltotriose has not been explored much by science, however, one study found that ''B. custersianus'' can ferment maltotriose. Another study found that all 7 strains of ''B. bruxellensis'' tested could ferment maltotriose, but not the trisaccharide raffinose. More investigation into this possibility is needed <ref>[http://www.asbcnet.org/events/archives/2015Meeting/proceedings/Pages/54.aspx Determination of sugar metabolism profiles of non-traditional yeasts in the Saccharomyces and Brettanomyces families. J. D. Cook, W. A. DEUTSCHMAN. ASBC Proceeding. 2015.]</ref><ref name="Crauwels1"></ref>.
Just like in other yeast species, the temperature has a direct effect on the rate of fermentation for ''Brettanomyces''. The optimal fermentation rate temperature range for ''Brettanomyces'' is between 22-32°C (77-90°F), however one study by Tyrawa et al. found that several strains of ''B. bruxellensis'' fermented at 30°C "smelled terrible" <ref name="Tyrawa_2017" />. Fermentation rate is about half as slow at 20°C (68°F). ''Brettanomyces'' will still grow at temperatures as low as (and maybe lower than) 15°C (59°F) and will be much slower, however one study showed a slightly higher viability during the full-time period of fermentation at 15°C as opposed to the optimal growth and fermentation temperature range of 20-32°C. The growth rate at 15°C, while still slowly active, varies from strain to strain with some strains growing very poorly . Carbohydrates are consumed much slower, with cellobiose metabolizing ceasing for some strains (although phenol production stayed the same between 15°C and 22.5°C) <ref name="Tyrawa_2017" />. At a temperature of 35°C (95°F), fermentation is greatly inhibited due to cell death. The primary byproducts of ''Brettanomyces'' fermentation, which are ethanol, acetic acid, and CO2, are produced both during growth but also during fermentation after growth has stopped. At the more optimal fermentation temperatures of 25-32°C, ethanol and acetic acid are produced faster from fermentation, but the amounts of ethanol and acetic acid produced from fermentation are not affected by temperature (i.e. higher temperatures do not produce more ethanol and acetic acid from the same amount of sugar, they are just produced faster at warmer temperatures because fermentation is faster) <ref name="Brandam_2008" />. The warmer temperature ranges that are ideal for ''Brettanomyces'' fermentation rates and growth rates may still produce unfavorable flavors such as higher alcohols, however, this has not been analyzed as far as we know <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1555689637792578/ MTF conversation with Richard Preiss of Escarpment Labs. 01/20/2017.]</ref>.
The below table is an example of the variety of sugar types that different strains/species of ''Brettanomyces'' banked at the [https://catalogue.ncyc.co.uk National Collection of Yeast Cultures] can ferment under semi-aerobic fermentation and aerobic growth (the '''semi-aerobic''' fermentation value is probably more useful for brewers since oxygen availability is limited during fermentation in normal brewing practices):
====Ester Production====
''Brettanomyces'' is capable of synthesizing several ethyl esters from ethanol and fatty acids. Among the most prolific of these are ethyl acetate, ethyl lactate and , phenethyl acetate, ethyl caproate, ethyl caprylate, ethyl deconoate <ref name="Tyrawa_2017" />, along with the hydrolysis (breakdown) of isoamyl acetate. During non-mixed fermentations where lactic acid is minimal to none, insignificant amounts of ethyl lactate ester is produced, whereas ethyl caprylate and ethyl caproate have a general increase. With the addition of lactic acid, ethyl lactate levels are greatly increased although may still not reach the flavor threshold level of 250 mg/L (strain dependent), and ethyl acetate is generally slightly increased. The amounts of esters produced varies widely based on species and strain <ref>[http://www.brettanomycesproject.com/dissertation/introduction/ Yakobson, Chad]. Pure Culture Fermentation Characteristics of Brettanomyces Yeast Species and Their Use in the Brewing Industry. Production of Secondary Metabolites. 2011.</ref>. A similar but slower evolution of esters has been seen in a long term study on examining how Belgian lambic from Cantillon ages in bottles. The study found that lactic acid (produced by lactic acid bacteria) and ethyl lactate increased as bottles aged, while ethyl decanoate and isoamyl acetate decreased, all presumably from ''Brettanomyces'' metabolism over time <ref>[http://horscategoriebrewing.blogspot.com/2016/02/thoughts-on-spitaels-and-van.html "Thoughts on Spitaels and Van Kerrebroeck et al, 2015." Dave Janssen. Hors Catégorie Blog. 02/20/2016. Retrieved 03/15/2016.]</ref>.
Ester production peaks towards the end of growth, and is influenced by temperature, aeration/agitation, and pH. Spaepen and Verachtert found in one study that the optimal temperature for growth and thus ester production was 28°C (77°F), although they did not test higher temperatures. This study also found that continuously shaken samples produced relatively less esters, as well as samples that were not exposed to oxygen at all. The highest ester production was found under conditions of limited oxygen supply, no agitation, held at a temperature of 28°C (77°F), and young cells produced more esters than older cells. It also found that esterase activity (esterase is the enzyme that facilitates ester production and destruction) increases as pH rises until a pH of 7.6 is reached, after which it begins to decline again. It was shown that the ester formation/degradation was indeed caused by enzymatic activity of any ''Brettanomyces'' species/strain, and not caused by chemical reactions or from ''Saccharomyces'' or ''Kloeckera'' activity <ref name="Spaepen"></ref>. Another study by Tyrawa et al. found that all strains of ''B. bruxellensis'' tested produced above threshold levels of ethyl caproate, ethyl caprylate, and ethyl deconoate esters at 15°C versus 22.5°C, but for some strains the higher fermentation temperature of 22.5°C produced significantly more of these esters than the lower 15°C temperature (other strains produced similar levels of esters at both temperatures, although they fermented slower at 15°C) <ref name="Tyrawa_2017" />.  Pitching rate of ''Brettanomyces'' may have a slight effect on ester production levels, but the differences caused by pitching rate probably do not have a significant impact on sensory character of the beer <ref name="MTF_Brett_Secondary"></ref>. ''Brettanomyces'' produces higher levels of esters when fermented without competition from ''S. cerevisiae'', and this correlates with higher ''Brettanomyces'' cell growth when not in competition with ''S. cerevisiae'' (see [[100%25_Brettanomyces_Fermentation#Are_100.25_Brett_Beers_Really_Cleaner.3F|100% ''Brettanomyces'' Fermentation]]) <ref name="Hubbe">[https://lookaside.fbsbx.com/file/Final%20work%202%20-%20Thomas%20H%C3%BCbbe.pdf?token=AWyH17JH23uJ-wby5L7bZBZ-_G9EbxFbtNZhoHdq9nFQXDyOlNW66kYos4cpt_oOzIGzmllGYexkcE6o3bESICERaG8rSM4SruxzJVAaDb7UaoeAfVvLY_7uNezyeiynjnVG1T1zYyf-Zl4f2E6NwyOIX0y9hlh78XXVWFGHZySDEA Effect of mixed cultures on microbiological development in Berliner Weisse (master thesis). Thomas Hübbe. 2016.]</ref>. The aromatic amino acids phenylalanine, tryptophan, and tyrosine have been associated with higher ester formation <ref name="Lucy_2015" />.
Esters are also broken down via a process called hydrolysis. Hydrolysis breaks the esters down using the same esterase enzyme within the ''Brettanomyces'' cells that is used to create esters. In general, all acetate based esters, except for phenethyl acetate and methyl acetate, are broken down faster than non-acetate esters by ''Brettanomyces''. In lambic brewing, some time after the primary fermentation finishes, ''Pediococcus'' begins to produce lactic acid. The formation of lactic acid by ''Pediococcus'' coincides with the appearance and growth of ''Brettanomyces'', which produces more acetic acid. After another 2-3 months, the ester content of the lambic beer changes and reaches an equilibrium. Ethyl acetate and ethyl lactate are greatly increased, while isoamyl acetate is greatly decreased, reaching an equilibrium of these esters. Given a static amount of acetic acid, ''Brettanomyces'' reaches equilibrium of ethyl acetate within 24 hours, while ethyl lactate equilibrium takes longer and is much more complex. In lambic, the majority of ester production and breakdown occurs within 1-3 months after lactic acid production by ''Pediococcus'' begins, and at a pH of around 3.5 and a temperature of around 15°C or less <ref name="Spaepen"></ref>. Pitching rate of ''Brettanomyces'' has an effect on the breakdown of isoamyl acetate with higher pitching rates breaking down this ester at a faster rate <ref name="MTF_Brett_Secondary"></ref>.
These vinyl derivatives have similar tastes to the ethyl derivatives but have lower flavor thresholds. Levels of all compounds produced vary depending on species and strain of ''Brettanomyces''. Although the production of ethyl phenols has been identified to occur higher in substrates with more available sugars, and this has also correlated with higher growth <ref name="Barata_2008">[http://onlinelibrary.wiley.com/doi/10.1111/j.1567-1364.2008.00415.x/full The effect of sugar concentration and temperature on growth and volatile phenol production by Dekkera bruxellensis in wine. André Barata, Daniela Pagliara, Tiziana Piccininno, Francesco Tarantino, Wilma Ciardulli, Manuel Malfeito-Ferreira, Virgílio Loureiro. 2008. DOI: 10.1111/j.1567-1364.2008.00415.x]</ref>, some data supports that pitching rate does not have an effect on how much phenol content is produced by ''Brettanomyces''<ref name="MTF_Brett_Secondary">[http://www.milkthefunk.com/wiki/Brettanomyces_secondary_fermentation_experiment Brettanomyces secondary fermentation experiment. Milk The Funk Wiki. Lance Shaner and Richard Preiss. Retrieved 04/21/2016.]</ref>. Perhaps growth itself is not as much of a factor in producing phenols, but having sugars available for metabolism is. This contradicts the somewhat popular belief that under-pitching ''Brettanomyces'' produces more "funky" flavors.
 
Another study by Tyrawa et al. found that fermentation temperature also did not have a significant affect on phenol production in 9 strains of ''B. bruellensis''. Given the same wort composition, strains of ''B. bruxellensis'' produced similar levels of phenols at both 15°C and 22.5°C. The ester production was affected by this temperature difference in some strains but not others (see [[Brettanomyces#Ester_Production|Esters]] above). Assuming that phenols contribute the the "funky" flavor characteristics, this suggests that perhaps a lower balance esters to phenols produces a more "funky" tasting beer more so than a beer with more phenol content. If so, a lower fermentation temperature may be one way to emphasize phenols over fruity esters <ref name="Tyrawa_2017" />.
It has been hypothesized that the production and destruction of various phenols by ''Brettanomyces'' is connected with the [https://en.wikipedia.org/wiki/Redox redox balance], however this has not been demonstrated. Ethyl phenols have been shown to be highly attractive to fruit flies, and it has also been proposed that these aromatics allow ''Brettanomyces'' to travel from food source to food source and by doing so increasing its chances of survival in the wild <ref>[http://www.sciencedirect.com/science/article/pii/S0960982214016558 Olfaction: Smells Like Fly Food. Geraldine A. Wright. 2015.]</ref><ref name="smith_divol_2016"></ref>. Phenols have been shown to have positive effects on decreasing protein glycation, a complication associated with type 2 diabetes <ref>[http://www.asbcnet.org/publications/journal/vol/2017/Pages/ASBCJ-2017-1323-01.aspx High Phenolic Beer Inhibits Protein Glycation In Vitro. Susan M. Elrod, Phillip Greenspan, Erik H. Hofmeister. 2017. ]</ref>.

Navigation menu