Changes

Jump to: navigation, search

Brettanomyces

947 bytes added, 16:06, 6 September 2020
added polyphenol data
====Phenol Production====
Phenols such as 4-vinylphenol (4VP; barnyard, medicinal) and 4-vinylguaiacol (4-VG; clove) can be produced in beer through the decarboxylation of hydroxycinnamic acids (HCAs) by yeast, and also in small amounts by long boils with a portion of the wort coming from wheat (3+ hours resulted in 0.3 ppm of 4VG). HCAs, such as ferulic acid and p-coumaric acid, are found in malt and released into wort during mashing at levels that are far below their flavor thresholds (greater than 500ppm flavor threshold) <ref name="lentz_2018">[http://www.mdpi.com/2311-5637/4/1/20/html#B13-fermentation-04-00020 The Impact of Simple Phenolic Compounds on Beer Aroma and Flavor. Michael Lentz. 2018. doi: 10.3390/fermentation4010020.]</ref>. Some strains of ''Oenococcus oeni'' and ''Lactobacillus'', as well as some strains of yeast such as ''Pichia'' spp, have been found to produce HCA's via cinnamoyl esterase activity in wine, although when these strains have been used in wine to increase the HCA levels, the final phenol levels produced by ''Brettanomyces'' were the same as wine that did not have an increase in HCA levels (the precursors in wine that lead to HCA's are different than they are in beer) <ref>[http://www.ajevonline.org/content/early/2018/05/02/ajev.2018.17092 Influence of Oenococcus oeni and Brettanomyces bruxellensis on Wine Microbial Taxonomic and Functional Potential Profile. Marie Lisandra Zepeda-Mendoza, Nathalia Kruse Edwards, Mikkel Gulmann Madsen, Martin Abel-Kistrup, Lara Puetz, Thomas Sicheritz-Ponten, Jan H. Swiegers, Am J Enol Vitic. May 2018. DOI: 10.5344/ajev.2018.17092.]</ref>. The esters in grape must that contain HCA's (ethyl ferulate and ethyl coumarate) can also be formed by acidic hydrolysis which occurs at the low pH of wine, and HCA's can then be released from these esters. This formation of esters is a slow process in wine, with one study reporting ~0.03 ppm of ethyl ferulate and ~0.4 ppm of ethyl coumarate at the end of primary fermentation and ~0.09 ppm of ethyl ferulate and ~1.4 ppm of ethyl coumarate after 10 months of barrel aging <ref>[https://pubs.acs.org/doi/full/10.1021/jf204908s Hydroxycinnamic Acid Ethyl Esters as Precursors to Ethylphenols in Wine. Josh L. Hixson, Nicola R. Sleep, Dimitra L. Capone, Gordon M. Elsey, Christopher D. Curtin, Mark A. Sefton, and Dennis K. Taylor. 2012. DOI: 10.1021/jf204908s.]</ref>. We are not aware of any studies that have reported an increase in HCA's from acidic hydrolysis over time in beer; however, this is a standard laboratory technique for forcing the release of HCA's from barley (although this lab technique uses a lower pH then that of sour beer). In addition, it has been demonstrated that spent yeast (''S. cerevisiae'' collected after beer fermentation) contains a small fraction of phenols and polyphenols absorbed from wort during fermentation <ref name="Cortese_2020">[https://www.sciencedirect.com/science/article/pii/S0021967319310295 Quantification of phenolic compounds in different types of crafts beers, worts, starting and spent ingredients by liquid chromatography-tandem mass spectrometry. Manuela Cortese, Maria Rosa Gigliobianco, Dolores Vargas Peregrina, Gianni Sagratini, Roberta Censi, Piera Di Martino. Journal of Chromatography A; Volume 1612, 8 February 2020, 460622. DOI: https://doi.org/10.1016/j.chroma.2019.460622.]</ref>. It is therefore conceivable that HCA levels could increase in sour beer over time.
While both ''Saccharomyces'' (only by "phenolic off flavor positive/POF+" strains) and ''Brettanomyces'' strains have varying capabilities based on strain of converting hydroxycinnamic acids to their vinyl derivatives <ref name="Lentz">[http://www.mdpi.com/2304-8158/4/4/581/htm Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast. Michael Lentz and Chad Harris. 2015.]</ref>, ''Brettanomyces'' is also able to reduce these vinyl phenol derivatives to ethyl phenol derivatives. Phenolic acid decarboxylase (PAD) is the enzyme that converts the HCAs into vinyl phenols. Vinyl reductase (VA) is the enzyme that reduces vinyl phenols to ethyl phenols <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1632316743463200/ Analysis of phenolic acid decarboxylase enzyme from the wine spoilage yeast Brettanomyces bruxellensis (poster). Mike Lentz, Jamie Lynch, Pricilla Walters, Rachel Licea, Henok Daniel, Kimberly Pereira. 2017.]</ref>. Phenol production has been observed to occur shortly after inoculation of ''Brettanomyces'' and has been hypothesized to play a large role in replenishing NAD<sup>+</sup> to alleviate the initial lag growth phase in ''Brettanomyces'' <ref name="Tyrawa_Masters">[https://atrium.lib.uoguelph.ca/xmlui/handle/10214/14757 Demystifying Brettanomyces bruxellensis: Fermentation kinetics, flavour compound production, and nutrient requirements during wort fermentation. University of Guelph, Masters Thesis. Department of Molecular and Cellular Biology. 2020.]</ref>. While almost all strains of ''Brettanomyces'' produce ethyl phenols, one strain of ''Brettanomyces anomalus'' has been found that has lost the genetic capability to produce phenols <ref name="colomer_2020_genome" />.
| 4-Vinylphenol <ref name="Doss">[http://www.ahaconference.org/wp-content/uploads/presentations/2008/GregDoss_BrettBrewing.pdf Doss, Greg]. Brettanomyces:
Flavors and performance of single and multiple strain
fermentations with respect to time. Presentation at 2008 NHC. pg 12.</ref> <ref name="Yakobson_Michigan">[http://www.mbaa.com/districts/michigan/events/Documents/2011_01_14BrettanomycesBrewing.pdf Yakobson, Chad]. Brettanomyces in Brewing the horse the goat and the barnyard. 1/14/2011</ref> (Musty, Medicinal, Band-aid, Plastic) || Vinyl phenol || p-Coumaric Acid || 0.2 ppm (flavor; in beer) <ref>[http://www.scielo.br/scielo.php?pid=S1516-89132013000600018&script=sci_arttext Determination of 4-vinylgaiacol and 4-vinylphenol in top-fermented wheat beers by isocratic high performance liquid chromatography with ultraviolet detector. Mingguang Zhu; Yunqian Cui. Dec 2013.]</ref> || C<sub>8</sub>H<sub>8</sub>O <ref name="goodscents_4VP">[http://www.thegoodscentscompany.com/data/rw1005801.html The Good Scents Company. 4-Vinylphenol. Retrieved 08/18/2015.]</ref> || Production level is different across species/strains of ''Brettanomyces'' <ref name="Oelofse">[http://www.sciencedirect.com/science/article/pii/S0740002008002050 Molecular identification of Brettanomyces bruxellensis strains isolated from red wines and volatile phenol production. A. Oelofse, A. Lonvaud-Funel, M. du Toit. 2009.]</ref>. Coumaric acid levels vary greatly between barley varieties; for example, between 320 µg/kg to 950 µg/kg in different varities of barley husks and 73 µg/kg to 657 µg/kg in different varities of barley malt <ref name="Cortese_2020" />.
|-
| 4-Vinylguaiacol <ref name="Doss"></ref><ref name="Yakobson_Michigan"></ref> (Clove) || Vinyl phenol || Ferulic Acid || 0.3 ppm (flavor; in beer) <ref>[http://www.aroxa.com/beer/beer-flavour-standard/4-vinyl-guaiacol/ Aroxa Website. 4-Vinylguaiacol. Retrieved 08/19/2015.]</ref> || C<sub>9</sub>H<sub>10</sub>O<sub>2</sub>. Also known as 2-methoxy-4-vinyl phenol <ref name="goodscents_4VG">[http://www.thegoodscentscompany.com/data/rw1005101.html The Good Scents Company. 2-methoxy-4-vinyl phenol. Retrieved 08/18/2015.]</ref>. || Produced by some strains of ''S. cerevisiae'' (see [[Saccharomyces#Phenolic_Off_Flavor_Strains|''Saccharomyces'']]) <ref name="Coghe_2014">[http://pubs.acs.org/doi/abs/10.1021/jf0346556 Ferulic Acid Release and 4-Vinylguaiacol Formation during Brewing and Fermentation:  Indications for Feruloyl Esterase Activity in Saccharomyces cerevisiae. Stefan Coghe, Koen Benoot, Filip Delvaux, Bart Vanderhaegen, and Freddy R. Delvaux. 2004.]</ref>. Some ''Brettanomyces'' species/strains may also be able to produce this compound at varying levels <ref name="Joseph"></ref><ref>[http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.1995.tb07374.x/abstract The biotransformation of simple phenolic compounds by Brettanomyces anomalus. Duncan A.N. Edlin1, Arjan Narbad, J. Richard Dickinson1 andDavid Lloyd. 2006.]</ref><ref name="Oelofse"></ref>. Organic malts have been linked to higher levels of 4VG, vanillan, and their malt precursor ferulic acid <ref name="Iyuke_2008">[http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.2008.tb00773.x/full The Effect of Hydroxycinnamic Acids and Volatile Phenols on Beer Quality. S. E. Iyuke, E. M. Madigoe, and R. Maponya. 2008.]</ref>. Ferulic acid is released during mashing, with an optimal mash temperature of 40-45°C (104-113°F) and a mash pH of 5.7-5.8 (enyzmatic release of ferulic acid is optimal at a pH of 7.5, but this high of a pH is difficult to achieve during mashing and would cause other enzymatic problems during the later steps of the mash) <ref name="Coghe_2014" /><ref>[https://onlinelibrary.wiley.com/doi/full/10.1002/j.2050-0416.2000.tb00036.x Extraction and Assay of Ferulic Acid Esterase From Malted Barley. F. J. Humberstone D. E. Briggs. 2012.]</ref>. Ferulic acid is generally more efficiently extracted from a combination of 70% barley malt and 30% wheat malt (not raw wheat), despite studies showing that barley malt often contains more ferulic acid than wheat malt (see [https://www.facebook.com/groups/MilkTheFunk/permalink/2053354874692716/ this MTF thread] that explains why this is) <ref>[https://onlinelibrary.wiley.com/doi/abs/10.1002/jib.189 Enhancing the levels of 4‐vinylguaiacol and 4‐vinylphenol in pilot‐scale top‐fermented wheat beers by response surface methodology. Yunqian Cui, Aiping Wang, Zhuo Zhang, R. Alex. Speers. 2005. DOI: https://doi.org/10.1002/jib.189.]</ref><ref name="Coghe_2014" /><ref name="lentz_2018" /><ref>[https://www.sciencedirect.com/science/article/pii/S0308814608003348 Release of phenolic flavour precursors during wort production: Influence of process parameters and grist composition on ferulic acid release during brewing. Nele Vanbeneden, Tom Van Roey, Filip Willems, Filip Delvaux, Freddy R.Delvaux. 2008. https://doi.org/10.1016/j.foodchem.2008.03.029]</ref><ref>[https://pdfs.semanticscholar.org/74cd/c0ad3811d95b92c1ecb55ddea392de95ba59.pdf Ferulic Acid in Cereals – a Review. Hüseyin BOZ. 2015. doi: 10.17221/401/2014-CJFS.]</ref>.
|-
| 4-Vinylcatechol <ref name="Doss"></ref><ref name="Yakobson_Michigan"></ref> (Plastic, Bitter, Smokey) || Vinyl phenol || Caffeic Acid || || C<sub>8</sub>H<sub>8</sub>O<sub>2</sub> <ref>[http://pubchem.ncbi.nlm.nih.gov/compound/441226 PubChem. 3-Vinylcatechol. Retrieved 08/18/2015.]</ref> || Production level is difference across species/strains of ''Brettanomyces'' <ref name="Oelofse"></ref>.
|-
| 4-Ethylphenol <ref name="Doss"></ref><ref name="Yakobson_Michigan"></ref> (Barnyard, Horsey, Spicy, Smoky, Medicinal, Band-Aid <ref>[http://www.aroxa.com/wine/wine-flavour-standard/4-ethyl-phenol/ Aroxa Website. 4-Ethyl Phenol. Retrieved 08/19/2015.]</ref>) || Ethyl phenol || 4-vinylphenol || 0.3 ppm (odor; in beer) <ref name="Maarse">[https://books.google.com/books?id=_OvXjhLUz-oC&pg=PA513&lpg=PA513&dq=4-ethylphenol+odor+threshold&source=bl&ots=fzhA9yvvrJ&sig=K0QykyRqj9TnezG1Mih4gLru1ZE&hl=en&sa=X&ved=0CC4Q6AEwAmoVChMI77DfhNi1xwIV0jqICh1zVgQ8#v=onepage&q=4-ethylphenol%20odor%20threshold&f=false Volatile Compounds in Foods and Beverages. Henk Maarse. CRC Press, Mar 29, 1991. Pg 514, 515.]</ref> || C<sub>8</sub>H<sub>10</sub>O <ref name="pubchem_4EP">[http://pubchem.ncbi.nlm.nih.gov/compound/4-ethylphenol PubChem Website. 4-Ethylphenol. Retrieved 08/19/2015.]</ref> || Also known as 1-Ethyl-4-hydroxybenzene and P-Ethylphenol <ref name="pubchem_4EP"></ref>. Identified as a major product of ''B. bruxellensis'' <ref name="Lucy_2015" />. Richard Preiss of [[Escarpment Laboratories]] describes pure 4EP as the following, "barnyardy with a slight solvent edge at low concentrations, and full on hospital antiseptic/bandaid/barnyard at high concentrations. Really quite complex, but maybe not in a good way." <ref name="Preiss_4EP_4EG">[https://www.facebook.com/groups/MilkTheFunk/permalink/2141048572590012/?comment_id=2141122099249326&reply_comment_id=2141606422534227&comment_tracking=%7B%22tn%22%3A%22R%22%7D Richard Preiss. Milk The Funk Facebook group thread on the flavor of 4EP and 4EG. 06/22/2018.]</ref>

Navigation menu