Changes

Jump to: navigation, search

Brettanomyces

7 bytes added, 23:30, 23 October 2017
m
no edit summary
''Brettanomyces'' has been occasionally identified on the skins of fruit (on the skins of cider apples and wine grapes for example) <ref name="smith_divol_2016"></ref><ref name="Schifferdecker"></ref>, and is thought to disperse via insects (called "vectors" in the scientific literature) <ref name="Steensels">[http://www.sciencedirect.com/science/article/pii/S0168160515001865 Brettanomyces yeasts — From spoilage organisms to valuable contributors to industrial fermentations. Jan Steensels, Luk Daenen, Philippe Malcorps, Guy Derdelinckx, Hubert Verachtert, Kevin J. Verstrepen. International Journal of Food Microbiology Volume 206, 3 August 2015, Pages 24–38.]</ref>. However, the occurrence of ''Brettanomyces'' has more commonly been identified in industrial food processing areas (wine, beer, kombucha, soft drinks, dairy products, tea, sourdough, etc.) <ref name="Crauwels_2016">[https://academic.oup.com/femsyr/article-abstract/17/1/fow105/2670560/Fermentation-assays-reveal-differences-in-sugar?redirectedFrom=fulltext Fermentation assays reveal differences in sugar and (off-) flavor metabolism across different Brettanomyces bruxellensis strains. Fermentation assays reveal differences in sugar and (off-) flavor metabolism across different Brettanomyces bruxellensis strains. Sam Crauwels, Filip Van Opstaele, Barbara Jaskula-Goiris, Jan Steensels, Christel Verreth, Lien Bosmans, Caroline Paulussen, Beatriz Herrera-Malaver, Ronnie de Jonge, Jessika De Clippeleer, Kathleen Marchal, Gorik De Samblanx, Kris A. Willems, Kevin J. Verstrepen, Guido Aerts, and Bart Lievens. 2016]</ref>. ''Brettanomyces'' is not considered to be airborne, however studies have found a very small amount of cells in the air at wineries where wine with ''Brettanomyces'' in it was being handled (most of the yeasts found in the air were ''Aureobasidium'' and ''Cryptococcus'', which aren't considered spoilage organisms in beer and wine). These set of studies also determined that very specific methodology was needed in order capture ''Brettanomyces'' from the air, and indicated that the yeast was "stressed". <ref>[http://www.sciencedirect.com/science/article/pii/S0956713513002284 Screening of yeast mycoflora in winery air samples and their risk of wine contamination. E. Ocón, P. Garijo, S. Sanz, C. Olarte, R. López, P. Santamaría, A.R. Gutiérrez. Food Control Volume 34, Issue 2, December 2013, Pages 261–267.]</ref>. While it is possible for ''Brettanomyces'' to be briefly carried by gusts of air, it only happens in the vicinity where the ''Brettanomyces'' beer or wine is being bottled (more so) or is actively fermenting (less so). Good cleaning and sanitation and cold temperatures should be employed to keep ''Brettanomyces'' from contaminating other equipment, however flying insects are also a likely cause for contamination of ''Brettanomyces''.
''Brettanomyces'' is commonly isolated from the surface of wood structures within breweries, wineries, and sometimes cideries. These include structures such as wooden fermentation vessels, walls of the building, as well as the inside surface of wood barrels and actually buried within the wood of barrels up to 8 mm, with the highest concentration of surviving cells being at the top staves where oxygen is more accessible. Some strains are able to utilize the cellulose of the wood as a carbon source. Ozone has been shown to be an effective way to kill ''Brettanomyces'' that is buried in the wood of oak barrels, but the ozone must be applied for an adequate time to allow for the ozone to diffuse into the oak. Heating the entirety inside of the oak barrels to 60°C for 20 minutes with hot water or steam has also been found to be an effective way of killing ''Brettanomyces'' within the wood of barrels <ref name="Agnolucci_2017" />. Although the role of ''Brettanomyces'' appears to be limited in distillation, it has been isolated during the fermentation process of tequila making. It has also been isolated from drains, pumps, transfer hoses, and other equipment that is difficult to sanitize. The survivability of ''Brettanomyces'' has also partly been attributed to its ability to form a [https://en.wikipedia.org/wiki/Biofilm biofilm] (in particular ''B. bruxellensis''). Microorganisms that can form a biofilm are more resistant to chemical cleaning agents and sanitizers than those that don't. ''Brettanomyces'' has therefore been identified as a significant contaminate for breweries and wineries. Oak barrels from wineries with unsanitary practices, in particular, have been identified as common contamination sites for ''B. bruxellensis''. ''Brettanomyces'' is also commonly found in sherry, and is found (although only rarely) in olive production, lemonade, kombucha, yogurt, pickles, and soft drinks. ''B. anomalus'' and ''B. bruxellensis'' are generally found much more commonly than the other three species of ''Brettanomyces''. <ref name="smith_divol_2016">[http://www.sciencedirect.com/science/article/pii/S0740002016302659 Brettanomyces bruxellensis, a survivalist prepared for the wine apocalypse and other beverages. Brendan D. Smith, Benoit Divol. June 2016.]</ref>.
Unlike most genres of yeast, ''Brettanomyces'' has the characteristics of being very tolerant to harsh conditions, including high amounts of alcohol (up to 14.5-15% ABV <ref name="Crauwels1" /><ref name="Agnolucci_2017" />), a pH as low as 2 <ref>[http://www.winesandvines.com/template.cfm?section=news&content=141954 Wines and Vines. New Research on Role of Yeast in Winemaking; report on a presentation by David Mills and Lucy Joseph from UC Davis. 11/14/2014. Retrieved 08/16/2015.]</ref>, and environments with low nitrogen <ref name="Schifferdecker"></ref>. This capability allows ''Brettanomyces'' to survive in alcoholic beverages such as beer, wine, and cider. In alcoholic beverages, ''B. bruxellensis'' tends to lag after the primary fermentation with ''Saccharomyces''. It is believed that during this lag phase, ''B. bruxellensis'' adapts to the harsh conditions of the beverage (low pH, high concentrations of ethanol, and limited sugar/nitrogen sources). After this lag phase, ''B. bruxellensis'' can grow and survive when no other yeasts can. ''Brettanomyces'' is also more resistant to pH and temperature changes, and tolerant of environments limited in oxygen (although ''Brettanomyces'' prefers the availability of at least a little bit of oxygen). Scientifically, which specific nitrogen and carbon sources ''B. bruxellensis'' uses in these stressful environments has not received much research <ref name="smith_divol_2016"></ref>.

Navigation menu