Changes

Jump to: navigation, search

Brettanomyces

122 bytes added, 12:38, 14 June 2018
no edit summary
''Brettanomyces'' is commonly isolated from the surface of wood structures within breweries, wineries, and sometimes cideries. These include structures such as wooden fermentation vessels, walls of the building, as well as the inside surface of wood barrels and actually buried within the wood of barrels. ''Brettanomyces'' has been easily cultured from within the wood of oak barrels up to 4 mm into the wood, and occasionally as deep as 5 to 8 mm, depending on the age and variety (slightly higher populations tend to survive in French oak over American oak, and one study found that the ''Brettanomyces'' was able to penetrate the French oak barrels up to 8 mm, while only penetrate American oak barrels up to 4 mm) of the barrel <ref name="Agnolucci_2017" /><ref name="Cartwright_2018">[http://www.ajevonline.org/content/early/2018/05/23/ajev.2018.18024 Reduction of Brettanomyces bruxellensis Populations from Oak Barrel Staves Using Steam. Zachary M. Cartwright, Dean A. Glawe, Charles G. Edwards. 2018. DOI: 10.5344/ajev.2018.18024.]</ref>, with the highest concentration of surviving cells being at the top staves where oxygen is more accessible (although Cartwright et al. found the opposite was true, perhaps due to methodology of sampling or a difference in SO<sub>2</sub> concentrations). Some strains are able to utilize the cellulose of the wood as a carbon source, and occasionally form pseudohyphae within the wood which expands the surface area of the cells allowing them more access to nutrients and allowing them to survive in nutrient deficient environments <ref name="Cartwright_2018" />. Ozone gas has been shown to be an effective way to kill ''Brettanomyces'' that is buried in the wood of oak barrels, but the ozone must be applied for an adequate time to allow for the ozone to diffuse into the oak. Ozone has also been shown to be an effective way of greatly reducing but not completely eliminating the number of ''Brettanomyces'' on wine grapes. Liquid ozone has been shown to be less effective at eliminating ''Brettanomyces''. Heating the inside of the oak barrels to 60°C for 20 minutes with hot water or steam has also been found to be an effective way of killing ''Brettanomyces'' within the wood of barrels (see [[Barrel#Sanitizing|Barrel Sanitation]] for information on pasteurizing barrels) <ref>[https://www.ncbi.nlm.nih.gov/pubmed/25989358 Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment. Fabrizio, Vigentini, Parisi,Picozzi, Compagno, Foschino. 2015.]</ref><ref>[https://www.sciencedirect.com/science/article/pii/S1466856417310068 Control of Brettanomyces bruxellensis on wine grapes by post-harvest treatments with electrolyzed water, ozonated water and gaseous ozone. Francesco Craveroa, Vasileios Englezos, Kalliopi Rantsiou, Fabrizio Torchio, Simone Giacosa, Susana Río Segade, Vincenzo Gerbi, Luca Rolle, Luca Cocolin. 2018. DOI: https://doi.org/10.1016/j.ifset.2018.03.017.]</ref>. Although the role of ''Brettanomyces'' appears to be limited in distillation, it has been isolated during the fermentation process of tequila making. It has also been isolated from drains, pumps, transfer hoses, and other equipment that is difficult to sanitize. The survivability of ''Brettanomyces'' has also partly been attributed to its ability to form a [[Quality_Assurance#Biofilms|biofilm]] (in particular ''B. bruxellensis''). Microorganisms that can form a biofilm are more resistant to chemical cleaning agents and sanitizers than those that don't. ''Brettanomyces'' has therefore been identified as a significant contaminate for breweries and wineries. Oak barrels from wineries with unsanitary practices, in particular, have been identified as common contamination sites for ''B. bruxellensis''. ''Brettanomyces'' is also commonly found in sherry, and is found (although only rarely) in olive production, lemonade, kombucha, yogurt, pickles, and soft drinks. ''B. anomalus'' and ''B. bruxellensis'' are generally found much more commonly than the other three species of ''Brettanomyces'' <ref name="smith_divol_2016">[http://www.sciencedirect.com/science/article/pii/S0740002016302659 Brettanomyces bruxellensis, a survivalist prepared for the wine apocalypse and other beverages. Brendan D. Smith, Benoit Divol. June 2016.]</ref>.
Unlike most genres of yeast, ''Brettanomyces'' has the characteristics of being very tolerant to harsh conditions, including high amounts of alcohol (up to 14.5-15% ABV <ref name="Crauwels1" /><ref name="Agnolucci_2017" />), a pH as low as 2 <ref>[http://www.winesandvines.com/template.cfm?section=news&content=141954 Wines and Vines. New Research on Role of Yeast in Winemaking; report on a presentation by David Mills and Lucy Joseph from UC Davis. 11/14/2014. Retrieved 08/16/2015.]</ref>, and environments with low nitrogen <ref name="Schifferdecker"></ref> and low sugar sources <ref name="Smith_2018">[https://www.sciencedirect.com/science/article/pii/S0740002017308249 The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Brendan D.Smith and Benoit Divol. 2018. DOI: https://doi.org/10.1016/j.fm.2017.12.011.]</ref>. It has been reported that some strains require a very low concentration of fermentable sugars (less than 300 mg/L) and nitrogen (less than 6 mg/L), which is less than most wines contain <ref name="Smith_2017">[https://www.sciencedirect.com/science/article/pii/S0740002017308249 The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Brendan D. Smith, Benoit Divol. 2017.]</ref>. Some strains are able to utilize ethanol, glycerol, acetic acid, and malic acid when no other sugar sources are available <ref name="Smith_2018" />. This capability allows ''Brettanomyces'' to survive in alcoholic beverages such as beer, wine, and cider. In alcoholic beverages, ''B. bruxellensis'' tends to lag after the primary fermentation with ''Saccharomyces''. It is believed that during this lag phase, ''B. bruxellensis'' adapts to the harsh conditions of the beverage (low pH, high concentrations of ethanol, and limited sugar/nitrogen sources). After this lag phase, ''B. bruxellensis'' can grow and survive when no other yeasts can. ''Brettanomyces'' is also more resistant to pH and temperature changes, and tolerant of environments limited in oxygen (although ''Brettanomyces'' prefers the availability of at least a little bit of oxygen). Scientifically, which specific nitrogen and carbon sources ''B. bruxellensis'' uses in these stressful environments has not received much research <ref name="smith_divol_2016"></ref>. [https://www.winesandvines.com/news/article/200000/New-Tools-to-Limit-Wine-Spoilage One study from Dr. Charles Edwards] found that a combination of keeping wine under 54°F (12.2°C) and alcohol at or above 14% resulted in a decline of ''B. bruxellensis'' populations for up to 100 days for two strains that were tested. The study found that neither of the strains grew well at 14% and stopped growth completely at 16% ABV in wine, but one strain grew better than the other at 15%, demonstrating the genetic diversity of ''Brettanomyces''. The researchers concluded that a combination of high ethanol and cold temperatures as well as sulfur dioxide, chitosan, and filtration could be used to control ''Brettanomyces'' in winemaking. While optimal growth temperature for ''Brettanomyces'' is between 77-82.4°F (25-28°C), it has been found to be able to grow at temperatures as low as 50°F (10°C) and as high as 95°F (35°C) ; see [[Brettanomyces#Carbohydrate_Metabolism_and_Fermentation_Temperature|fermentation temperature]] for more information <ref>[http://www.ajevonline.org/content/early/2017/01/05/ajev.2017.16102 Interactions between Storage Temperature and Ethanol that Affect Growth of Brettanomyces bruxellensis in Merlot Wine. Taylor A. Oswald, Charles G. Edwards. 2017.]</ref>.
''Brettanomyces'' is known for not producing much glycerol in beer. [https://en.wikipedia.org/wiki/Glycerol Glycerol] is a colorless, sweet-tasting, viscous liquid that is thought to be an important contributor to the mouthfeel of beer. Glycerol is produced as a stress response by a wide range of microbes, including ''S. cerevisiae'', and various species and strains of ''Debaryomyces'', ''Candida'', ''Lachancea'', and ''Zygosaccharomyces''. Despite not producing amounts of glycerol that are perceivable in beer, some strains of ''Brettanomyces bruxellensis'' actually produce glycerol which is stored inside of their cells as a response to osmotic stress. They can also uptake glycerol into their cells. Doing so allows the cells to survive osmotic pressure <ref>[https://www.sciencedirect.com/science/article/pii/S0740002013001251?via%3Dihub Osmotic stress response in the wine yeast Dekkera bruxellensis. Silvia Galafassi, Marco Toscano, Ileana Vigentin, Jure Piškur, Concetta Compagno. 2013.]</ref><ref>[https://academic.oup.com/femsle/advance-article-abstract/doi/10.1093/femsle/fny020/4828327?redirectedFrom=fulltext Osmotolerance of Dekkera bruxellensis and the role of two Stl glycerol-proton symporters. Jana Zemančíková, Michala Dušková, Hana Elicharová, Klára Papoušková, Hana Sychrová. 2018</ref>. It is currently not known how many strains are capable of producing glycerol internally, or if this amount of glycerol has any impact on perceived mouthfeel of a beer if a substantial amount of ''Brettanomyces'' cells eventually autolyze (see [https://www.facebook.com/groups/MilkTheFunk/permalink/2003626776332193/ this MTF thread]). The role of glycerol in creating mouthfeel is debatable in the wine world <ref>[https://www.winesandvines.com/features/article/68760 Tim Patterson. "Many Roads to Mouthfeel". Wines & Vines Magazine. Nov 2009. Retrieved 03/23/2018.]</ref>.

Navigation menu