Changes

Jump to: navigation, search

Brettanomyces

336 bytes added, 03:48, 12 December 2020
no edit summary
[[File:Chlamydospore Brett.JPG|thumb|First evidence of possible (unconfirmed <ref name="heit_lebleux">[https://www.facebook.com/groups/MilkTheFunk/permalink/3118617694833090/?comment_id=3120943487933844 Dr. Bryan Heit. Milk The Funk Facebook group thread on Lebleux et al. (2019) and chlamydospore in Brettanomyces. 12/11/2019.]</ref>) chlamydospore cell structures of ''B. bruxellensis'', found in a biofilm. Photo by [https://www.sciencedirect.com/science/article/abs/pii/S0168160519303952 Lebleux et al. (2019)] <ref name="Lebleux_2019">[https://www.sciencedirect.com/science/article/abs/pii/S0168160519303952 New advances on the Brettanomyces bruxellensis biofilm mode of life. Manon Lebleux, Hany Abdo, Christian Coelho, Louise Basmaciyan, Warren Albertin, Julie Maupeu, Julie Laurent, Chloé Roullier-Gall, Hervé Alexandre, Michèle Guilloux-Benatier, Stéphanie Weidmann, Sandrine Rousseaux. 2019. DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108464.]</ref>.]]
''Brettanomyces'' has the ability to form a [[Quality_Assurance#Biofilms|biofilm]]. Biofilm formation is a survival mechanism induced by stress whereby the cells adhere to non-living surfaces such as plastic and stainless steel<ref>[https://ives-technicalreviews.eu/article/view/4544 "Brettanomyces bruxellensis biofilms: a mode of life to withstand environmental stresses?" Sandrine Rousseaux, Manon Lebleux, Hany Abdo, Louise Basmacyian, Chloé Roullier-Gall, Hervé Alexandre, Stéphanie Weidmann. 2020. DOI: https://doi.org/10.20870/IVES-TR.2020.4544.]</ref>. After adhesion to the surface, the cells produce a protective layer of proteins and polysaccharides that help protect the organism from cleaning and sanitizing agents.
Joseph et al. (2007) tested 36 wine strains of ''B. bruxellensis'' for biofilm formation over a 10 day period. They found that just under half of the strains formed a biofilm, and about half of those formed considerable and consistent biofilms throughout the tests. Almost all strains tested (95%) adhered to a surface with 0.1% glucose within 6 hours of contact (the same conditions that get ''Saccharomyces cerevisiae'' to adhere to a surface; longer contact with surfaces and higher residual sugar could encourage ''Brettanomyces'' to adhere more readily to surfaces). A juice-based growth media in the range range of 2 - 4.5 pH was tested for biofilm formation and 3-4 for cell adhesion to a surface, and for most of the strains they formed stronger biofilms and adhered better in the higher pH growth media (4.5 pH being the highest tested). Under a pH of 3.5 significantly dropped biofilm formation and adherence, indicating that something about pH affects the cells ability to attach themselves. The researchers concluded that winemakers should keep wine in the lower end of the pH range (3.5). Six different types of cleaners were tested to see how well they removed the biofilms: keytones + surfactant detergent, quaternary ammonia + surfactant detergent, sodium hydroxide (caustic soda), sodium carbonate (soda ash), sodium hydroxide + surfactant (alkaline detergent), and chlorine (sanitizer, not a detergent). They found that only caustic soda was consistently efficient at removing the biofilm. The chlorine, while it did not remove the biofilm, still killed all of the ''Brettanomyces'' cells, and it was presumed that the other cleaners might have killed the ''Brettanomyces'', but that was not tested for. They also tested to see if cells that were adhered to a surface could be cleaned. Again, the caustic soda performed consistently the best, but the ammonia + surfactant cleaner and the quaternary ammonia + surfactant detergent also effectively removed adhered cells. The other cleaners varied in how well they removed adhered cells from a surface <ref>[https://www.researchgate.net/publication/235411588_Adhesion_and_biofilm_production_by_wine_isolates_of_Brettanomyces_bruxellensis Adhesion and biofilm production by wine isolates of Brettanomyces bruxellensis. C. M. Lucy Joseph, Gagandeep Renuka Kumar, Gagandeep Renuka Kumar, Edward Su, Linda F Bisson. 2006. American Journal of Enology and Viticulture 58(3):373-378.]</ref>.

Navigation menu