Changes

Jump to: navigation, search

Brettanomyces

107 bytes added, 16:28, 29 August 2020
no edit summary
The ability of a given ''Brettanomyces'' strain to ferment different types of sugars might be at least partially linked to its source of isolation. For example, a strain of ''B. bruxellensis'' isolated from a soft drink could not ferment the disaccharides maltose, turanose, or the trisaccharide melezitose, whereas all of the other ''B. bruxellensis'' strains isolated from beer and wine could ferment these disaccharides/trisaccharide. The beer strains; however, were unable to ferment cellobiose or gentiobiose, as well as arbutin and methyl-glucoside. The wine strains were able to ferment these disaccharides, perhaps because they were adapted to the environment in which they were isolated (wine barrels). Further studies are needed to see if this is a trend throughout the species <ref name="Crauwels1"></ref>. Daenen et al. (2007) found that none of the ''B. bruxellensis'' strains isolated from lambic that they tested could utilize cellobiose (see [[Brettanomyces#Glycosides_and_Beta-Glucosidase_Activity|glycosides]] below). This data point challenges the belief that ''Brettanomyces'' lives in wooden barrels because it is able to consume the cellobiose of the wood. A study by Tyrawa et al. from [[Escarpment Laboratories]] agreed that wine isolated strains were generally better at fermenting cellobiose than strains isolated from beer at 15°C (59°F), however at 22.5°C (72.5°F) some of the beer strains started to utilize cellobiose, indicating that temperature plays a role in whether ''Brettanomyces'' can ferment certain sugars <ref name="Tyrawa_2017">[https://onlinelibrary.wiley.com/doi/abs/10.1002/jib.565 The temperature dependent functionality of Brettanomyces bruxellensis strains in wort fermentations. Caroline Tyrawa Richard Preiss Meagan Armstrong George van der Merwe. 2019. DOI: https://doi.org/10.1002/jib.565.]
See also: [https://www.facebook.com/groups/MilkTheFunk/permalink/1285391951489016/ "Funky can be Great: Brettanomyces bruxellensis Beer Fermentations" (poster for study). Caroline Tyrawa, Richard Preiss, and George van der Merwe. 2017.]</ref>. Colomer et al. (2020) surveyed the whole genome of 64 strains of ''B. bruxellensis'' and found that beer strains are more likely to be able to ferment maltose (alpha-glucosidase) but not cellobiose (beta-glucosidase) and wine/wild strains tend to have the opposite tendency , indicating that ''B. bruxellensis'' strains have adapted to the environments in which they live over time <ref name="colomer_2020_genome" />.
Currently, research into how well ''Brettanomyces'' strains ferment the trisaccharide maltotriose has not been explored much by science. However, one study found that ''B. custersianus'' can ferment maltotriose. Another study found that all 7 strains of ''B. bruxellensis'' tested could ferment maltotriose, but not the trisaccharide raffinose. More investigation into this possibility is needed <ref>[http://www.asbcnet.org/events/archives/2015Meeting/proceedings/Pages/54.aspx Determination of sugar metabolism profiles of non-traditional yeasts in the Saccharomyces and Brettanomyces families. J. D. Cook, W. A. DEUTSCHMAN. ASBC Proceeding. 2015.]</ref><ref name="Crauwels1"></ref>.

Navigation menu