Changes

Jump to: navigation, search

Glycosides

3 bytes added, 16:02, 29 June 2016
m
fixed B. anomalus
Exogenous beta-glycosidase activity has been shown to be much more effective at releasing aglycones from glycosides in bacteria and fungi. For glycosides which contain a glucose, which is the majority, beta-glucosidase cleaves the sugar, thus releasing the aglycone. For glycosides that contain disaccharides, usually another enzyme must be present to first break down the disaccharide before the beta-glucosidase can release the aglycone (beta-xylosidase, alpha-arabinosidase, alpha-rhamnosidase, or beta-apiosidase) <ref name="Winterhalter"></ref>. However, glycosides in tea leaves that contain disaccharide sugars (cellulose/cellobiose <ref name="ucdavis_chemwiki">[http://chemwiki.ucdavis.edu/Core/Organic_Chemistry/Carbohydrates/Disaccharides "Disaccharides." UC Davis Chemwiki. Retrieved 05/15/2016.]</ref>) have been observed to be broken down without the use of these other enzymes; the beta-glucosidase cleaves the aglycone from the disaccharide on its own. Some species of yeast (''Debaryomyces castelli'', ''D. hansenii'', ''D. polymorphus'', ''Kloeckera apiculata'', ''Hansenula anomala'', and ''Brettanomyces'' spp), bacteria (''Oenococcus oeni''), and fungi (''Aspergillus niger'') have been found to have strain dependent beta-glucosidase activity, however several inhibitors for glucosidase activity vary for different strains of microbes. These inhibitors include the presence of glucose, pH, temperature, ethanol, and phenols <ref name="Maicas"></ref><ref name="Mansfield">[https://theses.lib.vt.edu/theses/available/etd-07262001-172630/unrestricted/Mansfieldthesis.pdf Quantification of Glycosidase Activities in Selected Strains of Brettanomyces bruxellensis and Oenococcus oeni. A. K. Mansfield, B. W. Zoecklein and R. S. Whiton. 2001.]</ref>. For example, for some strains of ''O. oeni'', as little as 10mg/L of glucose is enough to inhibit beta-glucosidase activity, or the presence of alcohol or typical wine pH (3.0 - 4.0) was enough to inhibit. Other strains of ''O. oeni'' are not inhibited by some or all of these inhibitors <ref>[http://www.sciencedirect.com/science/article/pii/S0168160505003296 A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Antonio Grimaldi, Eveline Bartowsky, Vladimir Jiranek. 2005.]</ref>.
Different types of beta-glucosidase enzymes have different optimal pH and temperatures. For example, beta-glucosidase produced from ''A. niger'' is optimal at a pH of 4.5 and a temperature of 58°C (136°F), where as the enzyme for ''Brettanomyces anomalaanomalus'' is optimal at a pH of 5.75 and a temperature of 37°C (98°F) (it was active to some extent between 15°-55°C). The beta-glucosidase enzyme ceases effectiveness below a pH of 4.5 for one strain of ''B anomalaanomalus'' studied <ref name="Vervoort"></ref>.
===Activity of Brettanomyces and Saccharomyces===
Many strains of ''B. bruxellensis'' have also been found to have varying degrees of intracellular or parietal (attached to the cell wall) beta-glucosidase activity. ''Brettanomyces'' has more strains that can produce beta-glucosidase than other genera of yeast, and the strains generally also have a higher rate of beta-glucosidase activity than other genera of yeast <ref>[http://link.springer.com/article/10.1038/sj.jim.2900720 Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. H McMahon, B W Zoecklein, K Fugelsang, Y Jasinski. 1999.]</ref><ref name="Mansfield"></ref>. Strains with higher beta-glucosidase activity have been isolated from lambic, suggesting that these strains may have an adapted ability to utilize sugar from glycosides <ref name="Vervoort">[http://onlinelibrary.wiley.com/wol1/doi/10.1111/jam.13200/abstract Characterization of the recombinant Brettanomyces anomalus β-glucosidase and its potential for bioflavoring. Yannick Vervoort, Beatriz Herrera-Malaver, Stijn Mertens, Victor Guadalupe Medina, Jorge Duitama, Lotte Michiels, Guy Derdelinckx, Karin Voordeckers, and Kevin J. Verstrepen. 2016.]</ref>. Some ''Brettanomyces'' strains may only be capable of beta-glucosidase activity, and not the other enzymes which are needed to break down disaccharide type glycosides. Additionally, cell death and autolysis can result in an increase in beta-glucosidase activity in solution due to the cell contents being released into solution <ref name="Mansfield"></ref>. Strains that can metabolize cellobiose tend to also have higher beta-glucosidase activity because the possess an extra gene for beta-glucosidase enzyme production <ref name="Crauwels1">[http://link.springer.com/article/10.1007/s00253-015-6769-9 Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains. S. Crauwels, A. Van Assche, R. de Jonge, A. R. Borneman, C. Verreth, P. Troels, G. De Samblanx, K. Marchal, Y. Van de Peer, K. A. Willems, K. J. Verstrepen, C. D. Curtin, B. Lievens. 2015]</ref>.
Sensory analysis of beers with cherries or hops have shown that there is a significantly detectable difference between cherry beers that have been exposed to beta-glucosidase from one strain of ''B. anomalaanomalus'' versus not exposed to the enzyme, but no significant difference was found in beers hopped with pellets. The cherry beers exposed to the enzyme contained more and above odor threshold eugenol (clove, honey aroma), benzyl alcohol (sweet, flower), benzaldehyde (almond, cherry) than cherry beers that were not exposed to the enzyme. The cherry beers exposed to the enzyme were not only identified in a blind tasting, but were also preferred to the cherry beers without exposure to the enzyme, indicating that beta-glucosidase activity in cherry beers provides a significant flavor difference. Other types of beta-glucosidase enzymes released different levels of different flavor compounds, indicating that the source (bacteria or yeast) of the enzyme make a significant difference in the flavors that are produced <ref name="Vervoort"></ref>.
==See Also==

Navigation menu