Changes

Jump to: navigation, search

Hops

209 bytes added, 17:39, 19 June 2017
updated grammar and flavor description of aged hops
==Aged Hops==
Aging hops leads to oxidation of acids and oils. Generally , brewers seek to avoid this to preserve the aromatic and bittering properties of their hops by freezing them and storing them in vacuum sealed packaging (oxygen exposure is by far the larger factor for hop degradation, followed by ambient room temperatures, which is significant because hops are often not stored in vacuum sealed packaging). However , some beer styles, including lambic and historical styles, make extensive use of aged hops. Aged hops still retain some antimicrobial properties and can be used for microbial inhibition. In addition to their antimicrobial activity , aged hops contribute important flavor and aroma compounds and precursors to beer. These flavor descriptors often include herbal, tea-like, Earth-like, and a more dull bitterness. [[Isovaleric Acid]] might also contribute the complexity to beer that has been brewed with aged hops. Historically, some brewers had issues keeping mildew from growing on aged hops that are aged in higher humidity areas (sulfur was used to combat mildew, which often gave beer a sulfur, rotten egg aroma) <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1228610483833830/ Conversation with Ron Smith and Aaron Barker on historical storage of hops. 02/07/2016.]</ref>.
In [[lambic]] brewing, the term '''aged hops''' refers to these hops which have been aged for 2+ years in non-refrigerated conditions, and in burlap sacks or some other oxygen permeable bag <ref>[http://jesterkingbrewery.com/home-for-our-aged-hops "Home for Our Aged Hops". Jester King's blog. Retrieved 11/18/2016.]</ref>. It should be noted that the term "aged hops" can also refer to any sort of hop aging (especially in scientific literature), including short -term hop aging (1-6 months, for example) at refrigerated or non-refrigerated temperatures, and in oxygen rich or vacuum sealed packaging. Much of the information below references hops that have been aged in warm conditions for shorter time periods than what hops are aged for in lambic brewing. The additional aging of hops that are used in lambic brewing or similar beers might have different effects than what has been studied in hops that are aged for shorter periods of time.
For techniques and usage amounts of aged hops, see [[Hops#Aged_Hops_in_Lambic|Aged Hops in Lambic]].
'''Oxidized alpha acids''' (humulinones) are similar in taste perception to iso-α-acids, but have been described as less bitter (an average of about 66% as bitter on a 1 to 1 basis). The quality of the bitterness from oxidized alpha acids has been described in one study as "smoother and less lingering" than iso-alpha acids; this was attributed to humulinones being more polar than iso-alpha acids and therefore do not stick or linger on the tongue as long as iso-alpha aicds <ref name="Shellhammer, Vollmer and Sharp, CBC 2015"/><ref name="Maye_2016" />. While the taste threshold of iso-alpha acids is 5-6 mg/L in light lager, the threshold for humulinones has been measured to be 8 mg/L in light lager (note that this is an average; tasters vary widely in how much bitterness they perceived from different bitter compounds) <ref name="Algazzali_2014" />. Humulinone content increases in hops after being pelletized (whole leaf hops have less humulinones). In fresh pellet hops that have a relatively low humulinone content, the humulinones contribute little to the bitterness of the beer when boiled, however when dry hopped they readily dissolve into the beer and have a significant impact on the beer's bitterness. With heavy dry hopping, the humulinones also decrease iso-alpha acid content of beer with more than about 25 IBU's, but not in beer with less than about 20 IBU. The decrease in iso-alpha acids and perceived bitterness/IBU is partially made up for the bitterness of the humulinones themselves (humulinones are picked up in IBU measurements with a [http://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Kinetics/Reaction_Rates/Experimental_Determination_of_Kinetcs/Spectrophotometry spectrophotometer]). In beers with less than 20 IBU, high dry hopping rates greatly increase the bitterness/IBU due to the bitter humulinones. The rate of humulinone formation is limiting, meaning that humulinone formation occurs rapidly during hop pelletization, and the concentration peaks during this time (researchers found that further exposure to air did not increase humulinone content). Scientists believe that this is because when whole leaf hops are baled, only 20% of lupulin glands are broken, whereas when they are pelletized 100% of the lupulin glands are broken. The exact mechanism by which alpha acids are converted to humulinones is not known <ref name="Maye_2016" />. Humulinone content in long-aged hops (1+ years) has not been studied.
'''Oxidized beta acids''' produce some compounds that also contribute to the perception of bitterness, specifically hulupones. Unlike humulinones which form relatively quickly from the oxidation of alpha acids, hulupones form at a much slower rate <ref name="Dušek_2014" />. Also unlike humulinones, they survive boiling and fermentation. While some sensory analysis of beers containing oxidized beta acids describe describes the resulting bitterness as "harsh and clinging", another analysis by Krafta et al (2013) described the bitterness of oxidized beta acids in beer when added in their pure form at the beginning of the boil as "pleasant and not lingering". The more degradation of beta acids into oxidized beta acids that occurs in hops, the more bitter beers brewed with these hops will be <ref name="krofta_2013" />. Two other compounds other than hulupones have been identified as being produced by the oxidation of beta acids, epoxycohulupone and epoxyhulupone. Their effect on beer flavor is not yet known, however , it is thought that hulupones have the greatest impact on beer flavor <ref name="Dušek_2014" />.
The bitterness of hulupones has received some debate among researchers. In 1973, a researcher found that hulupones are about 50% as bitter as iso-alpha acids. Briggs et al stated the complete opposite, and that hulupones are twice as bitter as iso-alpha acids. More recent studies using modern analysis techniques found that on a weight for weight basis, hulupones are 35-40% as bitter as iso-alpha acids in one study, and another found that they were 84% (+/- 10%) as bitter as iso-alpha acids (note that this is an average; tasters vary widely in how much bitterness they perceived from different bitter compounds) <ref>[https://www.researchgate.net/publication/307796892_The_effect_of_hop_beta_acids_oxidation_products_on_beer_bitterness The effect of hop beta acids oxidation products on beer bitterness. Karel Krofta, Světlana VRABCOVÁ, Alexandr Mikyška, and Marie JURKOVÁ. 2013.]</ref><ref name="Algazzali_2014" /><ref name="Briggs_2004">[https://www.crcpress.com/Brewing-Science-and-Practice/Briggs-Boulton-Brookes-Stevens/p/book/9780849325472 Brewing Science and Practice. Dennis E. Briggs, Chris A. Boulton, Peter A. Brookes, Roger Stevens. 2004.]</ref>. While the taste threshold of iso-alpha acids is 5-6 mg/L in light lager, the threshold for hulupones has been measured to be 7-8 mg/L in light lager <ref name="Algazzali_2014" />.
Both humulinones and hulupones have been identified as forming due to the oxidation of hop acids. However, other researchers have reported that both of these bitter compounds formed during the boiling of hops, and another during the storage and aging of beer. In all cases though , the amounts of the compounds directly correlated with the amount of hops used <ref name="Algazzali_2014" />.
Other compounds have been associated with the oxidation of beta acids and are extracted during wort boiling. These are described as giving a long-lasting, lingering bitterness on the palate. They include hydroxytricyclo-lupulone, dehydrotricyklolupulone, and hydroperoxytricyklolupulone <ref>[http://www.sciencedirect.com/science/article/pii/S0308814609001770 Structure determination and sensory evaluation of novel bitter compounds formed from β-acids of hop (Humulus lupulus L.) upon wort boiling. Gesa Haseleu, Daniel Intelmann, Thomas Hofmann. 2009.]</ref>.
====Oils====
Hop oils also generally degrade over time, however , their degradation rates are more complex. [http://pubs.acs.org/doi/abs/10.1021/jf00070a043 Lam et al. (1986)] found that aging both cascade and North American grown Hallertauer Mittelfrueh resulted in an increase in grapefruit-like character, although the compound that caused this was not identified. In the case of Cascade the intensity of this flavor correlated with the age of the hops <ref name="Lam et al., 1986"> [http://pubs.acs.org/doi/abs/10.1021/jf00070a043 Aging of Hops and Their Contribution to Beer Flavor. Lam et al. 1986.] </ref>. In the Hallertauer hops, aging resulted in an increase in a spicy/herbal character <ref name="Lam et al., 1986"/>, which is in agreement with reports of oxidized sesquiterpenes (specifically humulenol II, humulene diepoxides, caryophyllene, and to a lesser extent humulene monoepoxides and alpha-humulene) contributing a spicy/herbal flavor to beer <ref name="Goiris et al., 2002">[http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.2002.tb00129.x/abstract Goiris et al., 2002]</ref><ref name="Mikyška_2012" />. Many of the oils followed in the Lam et al. (1986) study which increased during a short accelerated aging period (2 weeks at 90°F) then decreased during extended aging (60 additional days at 90°F). The cascade hops lost more of the fruity/citrusy hop oils (myrecene, linalool and geranial) than Hallertauer, suggesting that different strains of hops can withstand aging better than others. The concentration of hop oils are affected by the brewing process and fermentation (see the table) <ref name="Lam et al., 1986"/>. Another study found that beta-ionone (classified as a ketone, and characterized as "floral" and "woody" <ref>[http://www.thegoodscentscompany.com/data/rw1006632.html Beta-ionone. Good Scents Company. Retrieved 11/22/2016.]</ref>) increased in beers brewed with hops that were aged for 30 days at 40°C versus beers brewed with aged hops <ref name="kishimoto_2007" />.
A recent study at the Shellhammer lab looked at how trained panelists and consumers perceived a lager beer dry hopped with slightly oxidized Hallertau Mittelfrüh hops (exposed to oxygen once, then stored at 38°C for two weeks) versus highly oxidized (daily exposure to oxygen and stored at 38°C for two weeks). They found that the trained panelists detected more characteristics that are associated with noble hops; e.g. more woody, earthy, and herbal characteristics in the lager beers dry hopped with oxidized hops. They also found the oxidized hopped beers to be more bitter (probably due to oxidized alpha and beta acids). Consumers were not statistically able to tell the difference. The study determined that oxidized hops might serve to provide nuanced increases in noble hop character <ref>[http://www.asbcnet.org/publications/journal/vol/2017/Pages/ASBCJ-2017-1287-01.aspx Aroma Properties of Lager Beer Dry-Hopped with Oxidized Hops. Daniel M. Vollmer, Victor Algazzali, and Thomas H. Shellhammer. 2017.]</ref>.

Navigation menu