Changes

Jump to: navigation, search

Lactobacillus

79 bytes added, 17:13, 26 June 2018
m
no edit summary
[http://www.sciencedirect.com/science/article/pii/S0308814617302911#t0005 Dongmo et al. (2017)] found 56 volatile flavor compounds, including various esters, alcohols, ketones, aldehydes, acids, ethers compounds, sulfur compounds, heterocyclic compounds, phenols (including guaiacol and 4-vinylguaiacol), terpenes, lactones, and several unidentified compounds. Key compounds produced by ''Lactobacillus'' include acetaldehyde (thought to be a major flavor contributor to kettle soured beers <ref name="Peyer_2017" />), β-Damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Acetaldehyde was the most impactful aroma compound found followed by propan-1-ol and γ-dodecalactone. Acetaldehyde was generally produced in much higher amounts (~23-64 µg/L) by the select strains of ''L. plantarum'', while ''L. amylolyticus'' and ''L. brevis'' produced only 1.5-3 µg/L. In fact, the levels of all of these compounds differed significantly based on the species and strain. The selected strains of ''L. brevis'' were associated as having worse aromas that were dominated by methional (cooked potatoes), acetic acid (vinegar), and nor-furaneol (caramel-like). The ''L. plantarum'' strains selected were identified as producing more positive aromas from compounds such as β-damascenone (apple/fruit juice), furaneol (strawberry), 2-phenylethanol (rose/caramel) and ethyl 2-methylbutanoate (citrus) Small but significant amounts of linalool and geraniol were also found, which are normally terpenes found in [[Hops|hops]]. Vanillan is formed from ferulic acid by some ''Lactobacillus'' species as well as ''Oenococcus oeni'' <ref name="Dongmo">[http://www.sciencedirect.com/science/article/pii/S0308814617302911 Key volatile aroma compounds of lactic acid fermented malt based beverages – impact of lactic acid bacteria strains. Sorelle Nsogning Dongmo, Bertram Sacher, Hubert Kollmannsberger, Thomas Becker. 2017. doi:http://dx.doi.org/10.1016/j.foodchem.2017.02.091.]</ref>. Some strains of ''Lactobacillus'' can break down chlorogenic acids, which are esters found in plants, into their phenolic derivatives. For example, some strains of ''L. fermentum'', ''L. helveticus'', and ''L. reuteri'' were found to hydrolize chlorogenic acids into caffeic acid, which can then be converted into other esters such as 4-vinylcatechol and 4-ethylcatechol by ''[[Brettanomyces#Phenol_Production|Brettanomyces]]'' <ref>[https://www.sciencedirect.com/science/article/pii/S0963996918303363 Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species. Elsa Anaheim Aguirre Santos, Andreas Schieber, Fabia nWeber. 2018. DOI: https://doi.org/10.1016/j.foodres.2018.04.052.]</ref>.
Some strains of ''L. plantarum'', ''L. brevis'', and ''Pediococcus pentosaceus'' can reduce hydroxycinnamic acids such as p-coumaric, caffeic, and ferulic acids, into their vinyl phenol derivatives, similar to POF+ ''BrettanomyesSaccharomyces'' and ''Brettanomyces''. Furthermore, some strains of ''L. plantarum'' have been found to further reduce the vinyl phenols into ethyl phenols (the same compounds produced by ''Brettanomyces'') by producing excreting a protein enzyme called ''VprA''. So far ''L. plantarum'' is the only species of lactic acid yeast that has been identified as being capable of creating ethyl phenols from vinyl phenols, and only certain strains have the genetic capability to do this <ref>[http://aem.asm.org/content/early/2018/06/20/AEM.01064-18.abstract Ethylphenols formation by Lactobacillus plantarum: Identification of the enzyme involved in the reduction of vinylphenols. Laura Santamaría, Inés Reverón, Félix López de Felipe, Blanca de las Rivas and Rosario Muñoz. 2018. doi: 10.1128/AEM.01064-18.]</ref>.
The type of grain that the ''Lactobacillus'' is fermented in may also play a role in the types and amounts of secondary metabolites that are produced. One study compared volatile acids produced by a probiotic strain of ''L. plantarum'' (NCIMB 8826) when fermented in oats, barley, malted barley, and wheat. In oats, there was slight increase in oleic acid and linoleic acid and a decrease when fermented in wheat, barley, or malted barley. In malted barley, there were small increases in flavor active compounds such as furfural ("almond" flavor), 2-ethoxyethyl acetate and isoamyl alcohol, but little to none detected when fermented in oats, wheat, or unmalted barley. Acetic acid production was higher in barley and malted barley than it was in oats and wheat. Many other organic acids in the oats, wheat, barley, and malted barley were supposedly taken up by the ''L. plantarum'' during fermentation. In barley, there were trace amounts of new acids created that were not already in the barley itself <ref>[http://www.sciencedirect.com/science/article/pii/S0308814609004373 Volatile compounds produced by the probiotic strain Lactobacillus plantarum NCIMB 8826 in cereal-based substrates Ivan Salmeron, Pablo Fuciños, Dimitris Charalampopoulos, Severino S. Pandiella. 2009.]</ref>. Some species of ''Lactobacillus'', including ''L. lactis'' and ''L. plantarum'', produce diacetyl (which can be reduced to acetoin and 2,3-butanediol) as an intermediate metabolite from consuming sugar, citrate, and amino acids. However, citrate levels are rather low in malted barley (but higher in sorghum), and diacetyl production has been observed to be very low in barley and oat based worts <ref name="peyer_review"></ref>.

Navigation menu