Changes

Jump to: navigation, search

Lactobacillus

308 bytes added, 16:44, 8 August 2019
Effects of Oxygen
The important take away here is that oxygen doesn't significantly affect most ''Lactobacillus'' species. They do not care if oxygen is present in order to grow and produce energy for themselves and lactic acid for brewers. They also do not produce significant amounts of [[Butyric_Acid|butyric acid]] or [[Isovaleric_Acid|isovaleric acid]] in the presence of oxygen <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1182597671768445/?comment_id=1182773928417486&reply_comment_id=1183047521723460&comment_tracking=%7B%22tn%22%3A%22R9%22%7D Conversation with Dr. Bryan Heit of Sui Generis Blog on MTF regarding butyric acid production by Lactobacillus. 11/23/2015.]</ref>.
Although it might not be relevant to beer brewing applications, there are a few exceptions to this in the scientific literature. For example, ''L. plantarum'', which is a facultatively heterofermentative species, is homolactic without the presence of oxygen and produces only lactic acid. After food sources have been exhausted and in the presence of oxygen, however, ''L. plantarum'' switches to heterolactic fermentation, and further converts lactic acid into acetic acid. In a lab setting the conversion of lactic acid to acetic acid only happened when glucose was no longer available (this may not be the case in wort where other limiting factors such as low pH can prevent ''L. plantarum'' from continuing their metabolic processes before all glucose is consumed, which is the case in kettle souring), and only during the stationary phase (after growth stopped). During the conversion of lactic acid to acetic acid, ''L. plantarum'' also produces hydrogen peroxide (H<sup>2</sup>0<sup>2</sup>), which is toxic to microorganisms and is thought to be a protection mechanism for ''L. plantarum'' <ref>[http://www.ncbi.nlm.nih.gov/pubmed/6480562 Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. Sedewitz B, Schleifer KH, Götz F.1984.]</ref><ref name="Quatravaux_plantarum"></ref><ref name="microbewiki_plantarum">[https://microbewiki.kenyon.edu/index.php/Lactobacillus_plantarum_and_its_biological_implications Lactobacillus plantarum and its biological implications. Microbe Wiki. Retrieved 6/7/2015.]</ref><ref name="shaner_plantarum"></ref>. This same process has also been observed in one strain of ''L. brevis'' and under similar conditions of depleted nutrients and oxygen <ref>[http://aem.asm.org/content/early/2017/08/21/AEM.01659-17.abstract The oxygen-inducible conversion of lactate to acetate in heterofermentative Lactobacillus brevis ATCC367. Tingting Guo, Li Zhang, Yongping Xin, ZhenShang Xu, Huiying He, and Jian Kong. 2017.]</ref>. It is important to understand that these results were under lab settings and without any sort of brewing application considered in these studies, so they should not be assumed to be important to the brewing process. Omega Yeast Labs reports that no noticeable acetic acid is produced if the oxygen is not purged with their OYL-605 ''Lactobacillus'' blend which contains ''L. plantarum'', and ; brewers should not aerate wort during souring but purging O2 is not required <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1222363364458542/?comment_id=1222371257791086&reply_comment_id=1225212894173589&comment_tracking=%7B%22tn%22%3A%22R%22%7D MTF conversation with Adi Hastings from Omega Yeast Labs on the effects of oxygen presence in OYL-605. 02/02/2016.]</ref>. This indicates that acetic acid and hydrogen peroxide production in typical brewing scenarios where little or no oxygen is present is probably not a concern. Oxygenating for yeast is recommended even if the ''Lactobacillus'' is not killed with a second boil, especially if the brewer is relying on one strain of brewers yeast to finish the fermentation. In some cases, oxygen could benefit some species. For example, one strain of ''L. brevis'' has been shown to increase growth rates in the presence of oxygen <ref name="brevis_aeration"></ref>. Thomas Hübbe's master thesis showed that under lab growth media "VLB-S7-S", "NBB®-A", and MYPG + cyclohexmide, both strains of ''Lactobacillus'' tested (''L. brevis'' and ''L. parabrevis'') did not show growth in an aerobic chamber, but did grow in an anaerobic chamber, although this might be an effect of the growth media and not representative of brewing conditions <ref name="Hubbe">[https://www.facebook.com/groups/MilkTheFunk/permalink/1407620509266159/ Effect of mixed cultures on microbiological development in Berliner Weisse (master thesis). Thomas Hübbe. 2016.]</ref>.
See also:

Navigation menu