Changes

Jump to: navigation, search

Mixed Fermentation

10,320 bytes added, 18:51, 23 December 2023
no edit summary
: ''This article is about sour brewing methods using commercial cultures. For other brewing methods, see [[Brewing Methods]].''
'''Mixed fermentation''' (also referred to as "mixed culture fermentation" or more specifically "multiple species mixed fermentation") is any fermentation that consists of a combination of ''[[Saccharomyces]]'' (brewer's yeast), ''[[Brettanomyces]]'' (wild yeast), ''[[Lactobacillus]]'' (lactic acid bacteria), and ''[[Pediococcus]]'' (lactic acid bacteria), or other [[Nonconventional_Yeasts_and_Bacteria|microbes that are unconventional in brewing]]. Broadly speaking, there are two styles of mixed fermentations: mixed fermentations with lactic acid bacteria (''Lactobacillus'' and/or ''Pediococcus'') and mixed fermentations without lactic acid bacteria. Mixed fermentation sour beers are characterized by their higher acidity and tart flavor caused by the production of [[Lactic Acid|lactic acid]], and require the use of a lactic acid bacteria (abbreviated as '''LAB'''; generally ''Lactobacillus'' and/or ''Pediococcus''). These beers generally fall within a pH range of 3.0-3.7 (although [[Titratable Acidity]] is more accurate for measuring perceived sourness). Mixed fermentation without lactic acid bacteria are usually fermented with a combination of ''Saccharomyces'' and ''Brettanomyces''. Mixed fermentation beers without lactic acid bacteria may be slightly tart from the [[Acetic Acid|acetic acid]] production of ''Brettanomyces'', but are generally not considered to be sour if well brewed becaues because they lack lactic acidand too much acetic acid is considered a flaw. For both categories, the primary fermentation will be completed by yeasts such as ''Saccharomyces'' and/or ''Brettanomyces''.
This page will focus on information for mixed fermentation sour beers using pure laboratory culturesand where the lactic acid bacteria is allowed to co-exist with yeast (e.g. not [[Wort_Souring#Souring_in_the_Boiler_.28Kettle_Sour.29|Kettle Sours]]). For mixed fermentation beers without lactic acid bacteria, see the [[Brettanomyces and Saccharomyces Co-fermentation]] page. For 100% ''Brettanomyces'' fermentations (technically not a "mixed" fermentation), see the [[100% Brettanomyces Fermentation]] page. 100% ''Lactobacillus'' or ''Pediococcus'' beers do not exist because they do not fully attenuate wort (see [[Lactobacillus#100.25_Lactobacillus_Fermentation|100% ''Lactobacillus'' fermentation]] for details). Other alternative yeast and bacteria can also be used, however this is currently not common even for brewers who make wild/sour beers. For example, [[Spontaneous Fermentation|spontaneous fermentation]] and [[Wild_Yeast_Isolation#Growing_and_Testing_Without_Plating|wild yeast captures]] usually contain a plethora of [[Nonconventional_Yeasts_and_Bacteria|yeast and bacteria that are not conventional to modern brewing]].
It is important to mention that mixed fermentation brewing in general has very few well-established rules and definitions. While we may categorize techniques for the sake of keeping some sort of manageable structure to this wiki, many methods can be used in conjunction with other [[Brewing Methods]], and brewers sometimes use same/different terminology for the same/different things (for example, the use of the term "wild beer" by professional brewers can mean "any mixed fermentation beer", or can also mean "mixed fermentation beer brewed with wild caught microbes"). New methodologies are constantly being developed that combine elements of more established techniques, as well as slight changes to established techniques. Definitions equally evolve over time. Many of the methods used are determined by the types of microbes the brewer is working with. An article of this length cannot encompass all mixed fermentation methods. Instead it will provide a "big picture" view of the general methodologies. Towards this end, we divide mixed fermentation methods into two approaches: the traditional long fermentation method and an increasingly popular, short fermentation method. They are divided here as a device to illustrate the philosophy of each and facilitate the discussion of the techniques used for each methodology. The distinction of these two methods is however somewhat artificial, indeed many brewers use elements of both approaches to achieve their desired results. Examples of how techniques can overlap to create new techniques can also be found in Michael Tonsmeire's pivotal book on mixed fermentation brewing, "American Sour Beers". An archive of various sour beer terminology discussions and debates can be found [[Sour_Beer_Terminology|here]].
Staggered pitching versus co-pitching can have a significant impact on the final flavor profile of the beer. While there is a lot of information regarding the fermentation profile of various microbes used in sour brewing, the impact of co-fermentation is less understood. Butler et al., partnered with Gilded Goat Brewing Company, analyzed the differences between co-pitching ''S. cerevisiae'', a strain of ''B. bruxellensis'', and a strain of ''L. plantarum'' (Sample A), versus pitching the ''S. cerevisiae'' and ''B. bruxellensis'' first and then the ''L. plantarum'' three days later (sample B), versus pitching the ''L. plantarum'' first and then the ''S. cerevisiae'' and ''B. bruxellensis'' three days later (Sample C). The three different beers were aged for a month and a half before packaged. Sample A was characterized as tasting the most balanced and consumers preferred it. Sample B was preferred the least and was characterized as having more "funk" flavor. Sample C had a distinctly sharp lactic sourness that overwhelmed the flavor from the ''Brettanomyces'', despite having slightly less lactic acid and a slightly lower titratable acidity than Sample A. Each of the three different fermentation profiles had a different sensory fingerprint with different measurements for proteins, titratable acidity (slight differences), lactic acid (slight differences), polyphenols, turbidity, color, and residual sugar, indicating that when individual species are introduced to ferment the wort, that it potentially has a wide impact on many different aspects of the beer. See the full poster [https://docs.wixstatic.com/ugd/695caf_8f98746d2f6942ff8810b298ef219eb9.pdf by Butler et al. here], as well as [https://www.facebook.com/groups/MilkTheFunk/permalink/2507876332573899/?comment_id=2507958592565673&reply_comment_id=2508072125887653&comment_tracking=%7B%22tn%22%3A%22R2%22%7D clarifications and corrections] to the "Conclusion" statements in the poster by Charlie Hoxmeier of Gilded Goat Brewing Company <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2503719276322938/?comment_id=2503738896320976&comment_tracking=%7B%22tn%22%3A%22R%22%7D Kelley Freeman. Milk The Funk Facebook group post. 02/09/2019.]</ref>. These results may or may not be repeatable with different strains or other variables, but it does demonstrate that co-pitching and staggered pitching produce measurably different results.
 
Depending on the ethanol tolerance of the lactic acid bacteria strains present in the culture, the presence of ethanol can have a negative impact on lactic acid bacteria. For example, in one published study, at 11% ABV, the strain of ''L. brevis'' used in the study didn't grow as well than as in lower ABV samples, and the resulting lactic acid content was lower as well ion the 11% ABV beer <ref>[https://www.biorxiv.org/content/10.1101/2022.03.07.483260v1 Beer ethanol and iso-α-acid level affect microbial community establishment and beer chemistry throughout wood maturation of beer. Sofie Bossaert, Tin Kocijan, Valérie Winne, Johanna Schlich, Beatriz Herrera-Malaver, Kevin J. Verstrepen, Filip Van Opstaele, Gert De Rouck, Sam Crauwels, Bart Lievens. bioRxiv 2022.03.07.483260; doi: https://doi.org/10.1101/2022.03.07.483260.]</ref>. Therefore, adding the lactic acid bacteria earlier in the fermentation process versus later in higher ABV beers will most likely impact the final beer's lactic acid content.
See also:
* [[Mixed_Fermentation#Multi-Stage_Fermentation|Multi-Stage Fermentation]] below.
* [[Brettanomyces_and_Saccharomyces_Co-fermentation#Review_of_Scientific_Analysis|Cofermentation of ''Brettanonyces'' and ''Saccharomyces'']].
* [[Mixed_Fermentation#Souring_Without_Brettanomyces|Mixed Fermentation Without ''Brettanomyces'']].
* [[Lactobacillus#Effects_on_Mixed_Fermentation|Effects of ''Lactobacillus'' on cofermentation]].
[[File:Long_Fermentation.jpg|thumb|upright=2.5|Conceptual graph of traditional microbe and wort dynamics|Conceptual graph of traditional souring microbe and wort dynamics. Y-axis for each microbe group depicts relative activity which combines in a conceptual sense: growth, acidification of wort, attenuation and production of flavor compounds. Plot drawn by Drew Wham based on concepts discussed in American Sour Beer <ref> Tonsmeire, M. (2014). American Sour Beers. Brewers Publications </ref> and Wild Brews <ref> Sparrow, J. (2005). Wild Brews: Beer Beyond the Influence of Brewer's Yeast. Brewers Publications</ref> . ]]
====Primary Fermentation====
Primary fermentation by ''Saccharomyces'' is generally conducted in the same way for a sour beer as for a non-sour beer. Depending on the intended final result the brewer might select a neutral ale strain (WLP 001/Wyeast 1056, WLP036/Wyeast 1007) to provide a neutral background for the souring microbes to act on. Alternatively, the brewer may use a Belgian strain or a saison/farmhouse strain (see ''[[Saccharomyces]]'' page for a comprehensive list) to increase the ester and/or phenol characters of the beer which can then be acted on by ''[[Brettanomyces]]''. Primary fermentation with ''Saccharomyces'' also tends to lend to more glycerol production which increases the beer's mouthfeel (''Brettanomyces'' generally does not produce much glycerol <ref>[http://www.milkthefunk.com/wiki/Brettanomyces#Secondary_Metabolites Brettanomyces; Secondary Metabolites. MTF Wiki. Retrieved 06/23/2016]</ref>). However, the role of glycerol in creating mouthfeel is debatable in the wine world <ref>[https://www.winesandvines.com/features/article/68760 Tim Patterson. "Many Roads to Mouthfeel". Wines & Vines Magazine. Nov 2009. Retrieved 03/23/2018.]</ref>.This primary fermentation can take place in any vessel suitable for a normal ''Saccharomyces'' fermentation. As always In general, it is best practice to maintain fermentation temperature control is of critical importance and temperature profiles for this fermentation step should match those as suggested by the yeast lab for the strain of ''Saccharomyces'' selected for this step, although strict temperature control might not be completely necessary as long as the primary fermentation remains within the suggested temperature range of the selected ''Saccharomyces'' strain (the goal is to avoid off-flavor production from the ''Saccharomyces'' fermentation, although a higher amount of esters might be desirable and ''Brettanomyces'' can clean up some off-flavors like diacetyl in small amounts). Once active fermentation has subsided the mostly attenuated wort can then be moved on to the secondary fermenting vessel. There is some variation in common practice as to whether or not the primary fermentation yeast should be carefully settled out, moving over bright clear beer only, or if un-settled unsettled cloudy high yeast population wort is moved to the secondary vessel. New Belgium moves their lager primary fermented beer after centrifuging, indicating that this centrifuged beer exhibits cleaner characters from secondary fermentation faster than un-centrifuged beer, allowing the resulting sour beer to be ready for packaging more quickly <ref> The Sour Hour Episode 2 with Lauren Salazar from New Belgium Brewing Company ].</ref>. Concerns of yeast autolysis, however, have generally been minimized by most brewers (see [[Mixed_Fermentation#Secondary_Fermentation|Secondary Fermentation]]).
During both primary and secondary fermentation, a complex set of interactions occurs between the various yeast and bacteria species. Much of this is as yet unknown scientifically. For example, the production of [[Lactic Acid|lactic acid]] by lactic acid bacteria not only stresses and limits growth of ''S. cerevisiae'', but it can also turn off "glucose repression", meaning that instead of consuming simple sugars first, ''S. cerevisiae'' stops choosing which sugar types to consume first and consumes all sugar types indiscriminately. This can result in under-attenuation problems in the short run, but also more residual sugars for ''Brettanomyces'' (see [[Lactic Acid|lactic acid]] for details). Another example is that co-fermenting with brewer's yeast and ''Lactobacillus'' can create a different flavor profile than if they are staggered with a kettle souring method (see [[Lactobacillus#Effects_on_Mixed_Fermentation|effects of ''Lactobacillus'' on mixed fermentation]]). Another example is that some studies support that in nitrogen rich substrates, ''S. cerevisiae'' will synthesize simpler amino acids from the more complex nitrogen sources, and those amino acids contribute to the sustained survival of both ''Lactobacillus'' and ''Brettanomyces'' in the more stressful, post-fermentation environment <ref>[https://academic.oup.com/femsyr/article-abstract/17/4/fox018/3867021/The-influence-of-Dekkera-bruxellensis-on-the?redirectedFrom=fulltext The influence of Dekkera bruxellensis on the transcriptome of Saccharomyces cerevisiae and on the aromatic profile of synthetic wine must. Janez Kosel Neža Čadež Dorit Schuller Laura Carreto Ricardo Franco-Duarte Peter Raspor. 2017.]</ref><ref>[http://www.sciencedirect.com/science/article/pii/S2405471217303903?via%3Dihub Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Olga Ponomarova, Natalia Gabrielli, Daniel C.Sévin, Michael Mülleder, Katharina Zirngibl, Katsiaryna Bulyha, Sergej Andrejev, Eleni Kafkia, Athanasios Typas, Uwe Sauer, Markus Ralser, Kiran Raosaheb Patil. 2017.]</ref> (see also [https://www.facebook.com/groups/MilkTheFunk/permalink/1856920997669439/ this MTF thread]).
====Secondary Fermentation====
After primary fermentation, the mostly attenuated beer is sometimes moved to a secondary fermentation vessel(and sometimes not; read below). Often in traditional In commercial production secondary fermentation is often conducted in wine barrels(mostly because it is messy to conduct primary fermentation in barrels), however, home brewers can accomplish this phase in glass or plastic carboys with low oxygen permeability. A mixed culture of ''Brettanomyces'', ''Lactobacillus'' and ''Pediococcus'' is then introduced to the beer. If barrels are being used then these microbes may simply come from the walls of the barrel, originating from a previous batch. Alternatively, the brewer might inoculate the wort with a mixed culture directly, either with a house culture or by introducing the dregs of bottled sour beer. Upon their introduction, these new microorganisms begin converting the longer chain sugars left over from the primary fermentation. These sugars are primarily converted into alcohol and lactic acid, increasing the degree of attenuation and lowering the pH of the beer. This also corresponds with a decrease in ''S. cerevisiae'' cell counts, and the release of amino acids and vitamins from yeast autolysis might help fuel helps feed lactic acid bacteria and ''Brettanomyces'' <ref name="Hubbe">[https://www.facebook.com/groups/MilkTheFunk/1407620505932826/ Effect of mixed cultures on microbiological development in Berliner Weisse (master thesis). Thomas Hübbe. 2016.]</ref>. Other flavor-impacting secondary metabolites are also produced, depending on the strains used. For example, if the beer contains ''Brettanomyces'' this often results in the production of a high amount of fruity esters such as ethyl acetate and ethyl lactate, as well as "funky" phenols and other flavor compounds specific to ''Brettanomyces'' (see [[Brettanomyces#Secondary_Metabolites|''Brettanomyces'' secondary metabolites)]]. In the presence of oxygen, acetic acid is also produced by ''Brettanomyces'' (and acetic acid bacteria if they are present) which in low amounts can be complementary, adding to the complexity of the beer. In one study on mixed fermentation sour beer with one strain each of ''L. brevis'', ''B. bruxellensis'', and S-04, researchers found that diacetyl that was formed around month 2 had disappeared after another 4 months of aging, indicating that diacetyl, if present in earlier stages of fermentation, can age out of mixed fermentation beer. They also reported that the antioxidant phenol, guaiacol, was present above flavor threshold during all stages of aging from 2-12 months, and [[Isovaleric Acid]] was formed after 12 months of aging <ref>[https://www.mdpi.com/2076-2607/11/7/1681 Postigo, V.; García, M.; Arroyo, T. Study of a First Approach to the Controlled Fermentation for Lambic Beer Production. Microorganisms 2023, 11, 1681. https://doi.org/10.3390/microorganisms11071681.]</ref>. These flavor compounds are essential to the flavor profile of mixed fermentation sour beer. For example, traditional Berliner Weisse was fermented with a mixed culture containing ''Brettanomyces'', and this was considered the most important aspect of achieving the fruity ester character of that beer style historically (see [https://docs.google.com/spreadsheets/d/1CNrO46TPSFpjhO3HX1-CbKK5rhFd7uGWdpONf7AJAlU/edit#gid=0 Benedikt Koch's table comparing esters of traditional Berliner Weisse versus kettle soured Kindl Weisse and Belgian gueuze]).
Some brewers (including homebrewers and professional brewers) do not find it necessary to move the mostly attenuated beer into from the primary fermentation vessel to a secondary aging vessel. Instead, the mixed culture is pitched directly into the primary fermenter. While yeast autolysis is a concern in regular brewing, it is arguably not a cause for concern in mixed fermentations that contain ''Brettanomyces''. Lambic brewers, for example, perform a primary fermentation in barrels and leave the beer in the barrels during the beer's entire aging process, which is usually 1-3 years <ref>[http://www.lambic.info/Brewing_Lambic#Barrels Lambic.info Wiki. Brewing Lambic. Retrieved 6/8/2015.]</ref>. Yeast autolysis releases trehelose, acids, and other compounds, which are metabolized by ''Brettanomyces'' <ref>[http://www.mbaa.com/districts/michigan/events/Documents/2011_01_14BrettanomycesBrewing.pdf Brettanomyces in Brewing the horse the goat and the barnyard. Chad Yakobson. 1/14/2011.]</ref>. Maintaining a [[Solera]] may be an exception to this (see the [[Solera]] page for details). The advantage of not moving the beer into a secondary vessel is that less overall oxygen is introduced into the beer (oxygen exposure will contribute to more acetic acid and then ethyl acetate production), and might be the best option if the brewer does not have a closed/CO2 system to prevent exposure to oxygen during transferring. Some [[Brettanomyces#Nitrogen_Metabolism|evidence suggests]] that the nutrients released by yeast autolysis are beneficial to ''Brettanomyces'', so leaving the beer on the yeast cake might even be more desirable than not. Some sour beer brewers strive to achieve autolysis in their beers with the belief that it could improve mouthfeel and react with other compounds to produce favorable flavors, similar to how autolysis is sometimes desired in winemaking in the form of [https://www.thekitchn.com/wine-words-lees-aging-179813 lees aging] or [https://www.thekitchn.com/wine-words-btonnage-191331 bâtonnage ]<ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/3177292242298968/ Lars Meiner, Richard Preiss, and Alex Seitz. milk The Funk Facebook group thread on autolysis. 01/03/2019.]</ref>.
Co-pitching all of the microbes to begin with, including the primary ''Saccharomyces'' culture, can produce different results than staggering the pitches of individual species over time. For example, many brewers pitch a single mixed culture that contains ale yeast, ''Brettanomyces'', and lactic acid bacteria. Other brewers, such as Vinnie Cilurzo at Russian River, prefer to pitch their ale yeast first, and then pitch ''Brettanomyces'' and/or lactic acid bacteria after the primary fermentation <ref>Tonsmeire, Michael. "American Sour Beers: InnovativeTechniques for Mixed Fermentations". Brewers Publications. 2014. Pgs 100-101.</ref>. See this [http://brulosophy.com/2018/05/14/mixed-fermentation-combined-vs-staggered-microbe-pitch-exbeeriment-results/ Brulosophy experiment comparing co-pitching versus staggered pitching] (note that oxygen exposure during the staggered pitch and other variables in this experiment could account for some of the differences between the two beers) <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2093241697370700/?comment_id=2093637253997811&comment_tracking=%7B%22tn%22%3A%22R%22%7D Dan Pixley and Zach Taggart. Milk The Funk Facebook thread on the "MIXED FERMENTATION: COMBINED VS. STAGGERED MICROBE PITCH" blog post. 05/14/2018.]</ref>.
 
It is not unusual to see a slight rise in pH during the secondary or aging phases. For example, Santeri Tenhovirta's in his masters thesis he measured the pH of several species of ''Lactobacillus'' that were pitched into wort for 2 days, followed by US-05. Tenhovirta reported a slight pH rise of about 0.3 from day 150 until day 300-330. According to Kunze and Bamforth, an increase in pH towards the end of fermentation or aging could be caused by yeast autolysis <ref name="Tenhovirta_masters">[https://helda.helsinki.fi/handle/10138/303018 The Effects of Lactic Acid Bacteria Species on Properties of Sour Beer. Santeri Tenhovirta; master thesis in Food Science from the University of Helsinki. 2019.]</ref><ref>Bamforth, CW. 2001. pH in brewing: An overview. Master Brewers Association of the Americas Technical Quarterly 38(1):1-9.</ref>.
====Aging====
Aging is generally required for mixed fermentations that include ''Brettanomyces''. The necessary/ideal amount of aging time will depend on many factors including the microbes pitched, the pitching rate, wort composition, storage temperature, and the desired final beer. Keep in mind that the beer will also continue to develop once packaged. For more straightforward beers with highly attenuative primary strains (like tart saisons), a reasonable final product with tartness and ''Brettanomyces'' character can be reached in a few months. For more complex and/or acidic beers (such as Flemish reds or beers inspired by lambics) you may expect an aging time of at least 9 months, but quite possibly as long as 12-18 months or longer. In general longer aging will allow more complex expression of the spectrum microbes present. Some brewers will package a beer after the finishing gravity has stabilized (see [[Packaging]]), and allow the beer to fully develop in the bottle. Keep in mind that some volatile flavor compounds, such as sulfur-based compounds, may volatilize off at a faster rate in a fermenter (especially a shallow fermenter such as a barrel) than they would in a sealed bottle, and bottling too early can result in over-carbonation.
Sour beer should be aged in an environment that minimizes high temperatures and exposure to oxygen. Avoid temperatures over 85°F (29.5°C) and under 55°F (13°C). Drastic temperature fluctuations and changes in atmospheric pressure will cause a vacuum inside of the fermentation vessel causing water airlocks to "suck back" air into the fermenter. This could potentially contribute to [[Acetic Acid]] and [[Ethyl acetate]] (nail polish aroma in high concentrations) production by ''Brettanomyces'', and these off-flavor metabolites are considered permanent. Filling the carboy to the neck or topping up carboys or barrels after primary fermentation will also help minimize the surface area of the beer that can be exposed to air. Topping up and flushing with CO<sub>2</sub> might also help reduce the risk of mold growth <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2640657275962470/?comment_id=2641402822554582&reply_comment_id=2642128842481980&comment_tracking=%7B%22tn%22%3A%22R%22%7D Lars Meiner. Milk The Funk Facebook group thread on preventing mold growth on krausen. 05/02/2019.]</ref> on any krausen material that has dried on the sides of the fermentation vessel after primary fermentation. Avoid oversampling the beer (once every 3 months at the very most). Using an "S airlock" has the benefit of showing if there is positive, negative, or equalized pressure in the fermenter, which could possibly assist in showing whether suck-back is a problem (see the Mark Trent YouTube video below). One way ventilated silicone bungs can be used for barrels or other waterless type airlocks (such as the [http://www.better-bottle.com/products_master.html BetterBottle "DryTrap"] or kegs with a [http://seanterrill.com/2015/06/25/build-a-better-spunding-valve/ spunding valve]; see also [[Sanke Fermenter]]) that allow gases to escape the fermenter but not enter from the environment, and [https://wwwbeer.redditthegremlyn.com/r2019/Homebrewing09/comments04/beolwvgrems-the-gas-reducing-multivessel-system/spunding_system_for_my_sour_program/ this Reddit post on Colin Burton's homebrew setup for connecting multiple cornelius kegs to a daisy-chained single spunding valve with corny kegs]. Topping up barrels with fresh beer every 3-6 months might help reduce acetic acid and ethyl acetate, and humidity and temperature control can help reduce evaporation (see [[Barrel#Using_Barrels_for_fermentation_and.2For_aging|Barrel]]). It should also be noted that micro-oxygenation is helpful for creating certain flavors in sour beer, and many homebrewers have reported not having any issues with overexposure to oxygen using water-based airlocks. For example, a small amount of oxygen helps [[Brettanomyces]] growth, and a small level of acetic acid is desirable for the complexity of long-aged sour beers <ref>[https://www.milkthefunk.live/podcast Richard Preiss. Interview on Milk The Funk "The Podcast" Episode #000. 12/13/2017.]</ref> (~30 minutes in). Higher levels of acetic acid are sometimes desirable for [[Flanders Red Ale]] style beers.
:Mark Trent's demonstration of how easy it is for temperature changes to cause a vacuum and suck-back air into a vessel:
|}
Headspace and fermenter size are also concerns when it comes to aging beer with living ''Brettanomyces''. This includes sour beers, [[Brettanomyces_and_Saccharomyces_Co-fermentation|non-sour beers with ''Saccharomyces'' and ''Brettanomyces'']], and [[100%25_Brettanomyces_Fermentation|100% ''Brettanomyces'' beers]] that are aged. The larger the headspace, the more air will be sucked in when a vacuum occurs. The smaller the fermenter, the more headspace becomes a problem. Smaller vessels, in general, have a larger surface area to volume ratio. Therefore, they have more potential for exposure to oxygen. A large headspace in a smaller vessel exacerbates this problem, therefore it is advised to top up small fermenters and flush them with CO<sub>2</sub?> after primary fermentation or if significant evaporation occurs during aging. For example, a 1-gallon jug should be filled all the way to the neck if possible. A 5-gallon carboy could also be filled to the neck, but a little more headspace is permissible since it is a larger volume. Barrels are porous and the liquid inside them slowly evaporates. Some brewers combat this by topping up their barrels on a regular basis; this also helps keep the top staves from drying out (higher humidity can help limit evaporation; see the [[Barrel#Using_Barrels_for_fermentation_and.2For_aging|Barrel]] page).
One misconception about aging beers is the claim that CO<sub>2</sub> is heavier than air and forms a blanket that protects the beer from oxygen. This is not true unless CO<sub>2</sub> is constantly being produced from the beer. The [https://en.wikipedia.org/wiki/Ideal_gas_law Ideal Gas Law] states that unlike solids or liquids of different densities, the gasses will of different densities eventually mix. See [http://beerandwinejournal.com/can-co2-form-a-blanket/ Dr. Chris Colby's explanation of this on Beer and Wine Journal.], and this [https://www.youtube.com/watch?v=_oLPBnhOCjM science video documentary demonstration of how gasses eventually mix] (note that the molecular weight of bromine used in the video is 160 g/mol and the weight of CO<sub>2</sub> is 44.01 g/mol, so CO<sub>2</sub> would diffuse into air faster than bromine <ref>[https://pubchem.ncbi.nlm.nih.gov/compound/Dibromine Bromine. PubChem. Retrieved 1/1/2016.]</ref><ref>[https://pubchem.ncbi.nlm.nih.gov/compound/280 Carbon Dioxide. PubChem. Retrieved 1/1/2017.]</ref>).
See also:
* [[Eccentric Beekeeper Sampling Syringe and Purging Wand]] for tools that help limit oxygen exposure during sampling.
* [http://beachwoodbbq.com/pdf/BBAIBLTBLENDERY.pdf "Brewing Beer in America Inspired By the Belgian Lambic Tradition" by Ryan Fields, head brewer and blender at Beachwood Blendery.]
* [https://www.homebrewtalk.com/threads/turning-your-fermonster-into-a-complete-closed-transfer-system-for-cheap.68099 Dominick Patrick's HBT thread, "Turning your Fermonster into a complete closed transfer system for cheap!"]
==Modern Method - Fast Fermentation==
===Souring Without ''Brettanomyces''===
Methods of creating sour beer without using ''Brettanomyces'' are also considered a form of mixed fermentation. In general, these methods include pitching a pure culture of ''Lactobacillus'' along with brewers yeast at the same time or staggered with pitching ''Lactobacillus'' first for a day or two and then brewers yeast (Cascade Brewing is known for the latter process <ref>Tonsmeire, Michael. "American Sour Beers: Innovative Techniques for Mixed Fermentations". Brewers Publications, Jun 15, 2014. Pg 125.</ref>). In some cases, the brewer's yeast (''Saccharomyces cerevisiae'' or ''Saccharomyces pastorianus'') can be pitched first, and then the ''Lactobacillus'' is pitched (see "Reverse MTF Method" below). Since ''Brettanomyces'' is removed from the process, these methods tend to create a sour beer in a shorter amount of time, but without the complex ester and phenol profile of ''Brettanomyces''. While these types of beers may be less complex than beers with ''Brettanomyces'', they produce a different beer than [[Wort Souring|Kettle soured]] beers. Several studies have shown that co-fermentation of brewers yeast and lactic acid bacteria produces an objectively different beer than kettle souring or adding pure lactic acid. Pre-acidifying with lactic acid bacteria fermentation can also negatively affect the primary yeast fermentation, but other studies have shown that it can also result in a faster fermentation time but with less attenuation and other methods less yeast growth. See the [[Lactobacillus#Effects_on_Mixed_Fermentation|''Lactobacillus'' Effects on mixed Fermentation]] wikipage for more information on these studies.  ===="Reverse MTF Method"====Devin Bell reported getting a good level of sourness by co-pitching probiotics with ''L. plantarum'' or Omega Labs OYL-605 with yeast, or even after primary fermentation (also known colloquially as the "Reverse MTF Method"). By allowing the yeast to ferment for two or three days before adding ''Lactobacillus'' for souring wort before , it is claimed that this method allows the yeast character to be expressed more so than with kettle sours. In the case of pitching brewer's 'L. plantarum'' after fermentation with saison yeast, Bell reported that the beer turned out like a sour saison, where as well as pitching lactic co-pitched makes for a better Berliner Weisse or Gose style beer without the "saison" yeast character. This has also improved head retention in his beers. Using no hops seems to be required in order to get acid bacteria production from the ''L. plantarum'' after primary fermentation . Devin clarified that his "best success" is pitching ''S. cerevisiae'' saison strain with brewera selection of ''Brettanomyces''s yeastfor primary fermentation. After 5-7 days of fermentation, are examples he pitches ''L. plantarum'' (2 shots of GoodBelly or 1 package of Omega Labs OYL-605 for 5-6 gallons of this processbeer) <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1739156616112545/?comment_id=1739183316109875&reply_comment_id=1739749539386586&comment_tracking=%7B%22tn%22%3A%22R%22%7D Devin Bell. Milk The FunkFacebook group. 06/30/2017.]</ref>. Once terminal gravity is reached (1.002-1.004), he bottles right away. The bottles can be served at 8 weeks in the bottle, but start to peak at 24 weeks <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1562696320425243/?comment_id=1562702310424644&comment_tracking=%7B%22tn%22%3A%22R0%22%7D MTF discussion with Devin Bell on "reverse MTF kettle sour. 01/26/2017.]</ref>. See also [https://www.facebook.com/groups/MilkTheFunk/permalink/1217518078276404/ this thread by Devin Bell] and [Wort Souringhttps://www.facebook.com/groups/MilkTheFunk/permalink/1728489143845959/ this thread by (Zach) Caroline Whalen Taggart]. See also:* [https://www.facebook.com/SouthernBrewersConference/videos/881235365357984/ Devin Bell and Dan Pixley presentation at SBC 2017 on quick souring, including more details on this method.] and * [[Alternative_Bacteria_Sources#MTF_Culturing_from_Probiotics|General tips on using probiotics to make sour beer]].22Reverse_Kettle_Sour ==Finishing Mixed Fermentation Sour Beer=====Determining When It Is Done===Unless the brewer has worked with the same blend of microbes and wort recipe, it is difficult to give an exact time frame on when a mixed fermentation beer might be ready. Anywhere from three to twelve months (and sometimes longer) is a reasonable amount of time, but when any given beer will be ready for packaging within this time depends on many factors including the microbes pitched, their health over time, wort composition, temperatures during the aging time, etc.22|MTF "Reverse Kettle Sour" The best guide is a long-term stable gravity: if the beer's gravity has remained stable between several readings over a month or two, then the beer may be ready for packaging. The second factor is how does the beer taste? If it tastes good, and the gravity is stable, then it can be packaged. If the beer does not seem to have a mature flavor or has off-flavors that need to age out, then feel free to age it longer. Some off-flavors will change even when bottled or kegged, but others (such as sulfur-based compounds) will need to dissipate out of the fermenter slowly over time. ===Bottling and Kegging===See the [[Packaging]]page.
==Finishing Mixed Fermentations==
===Reusing a Sour Yeast Cake===
Reusing a sour yeast cake can often provide great results. Brewers have reported success re-pitching on very old yeast cakes (2+ years) without getting off flavors from yeast autolysis. After several months, ''[[Saccharomyces]]'' tends to die off due to the low pH in a sour beer. The bacteria and ''[[Brettanomyces]]'' tend to survive the lower pH, and their cell counts can be high depending on how old the yeast cake is (interestingly, ''Brettanomyces'' remains more viable over time if it was co-fermented with ''S. cerevisiae'' than if it was fermented by itself; i.e. [[100%25_Brettanomyces_Fermentation|100% ''Brettanomyces'' beers]] <ref name="Hubbe"></ref>). By pitching new wort on an old sour yeast cake, these microbes (particularly the [[Lactobacillus]]) have access to the simple sugars in the wort <ref>[http://www.themadfermentationist.com/2009/11/brewing-sour-beer-at-home.html Tonsmeire, Michael. The Mad Fermentationist. Brewing Sour Beer at Home. Last paragraph in the "Inoculation" section. Retrieved 2/19/2015.]</ref>. Using a young yeast cake is also a viable option, and may carry over more surviving ''Saccharomyces'' cells as well as more viable cells of the other various microbes. In general, [[Laboratory_Techniques#Yeast_Rinsing.2FWashing|rinsing or washing the yeast cake]] is not necessary ([https://www.youtube.com/watch?v=9LXEAZbei_8 acid washing] can kill the bacteria). The beer itself can also be used as an inoculate and might be more desirable so as to avoid trub. If the beer has sat in a barrel ''Acetobacter'' and other unwanted microbes might be more present on the surface of the pellicle, and would remain after racking the beer out of the barrel, so some professional brewers advise using beer as an inoculate for this reason <ref>[https://youtu.be/IGzoh4brILA?t=52m30s Yakobson, Chad. Interview on Craft Commander. 12/20/2016. Retrieved 12/22/2016.] (~52 mins in)</ref>. If the yeast cake is particularly old, perhaps say older than 1 year, or has a very low pH (low 3's), then making a starter with the slurry will help guarantee the viability of the microbes. Such a starter can be treated the same as a [[Mixed_Cultures#Starters_and_Other_Manufacturer_Tips|mixed culture starter]] that can be assumed to not have any viable ''Saccharomyces''.
See the [[Mixed_Cultures#Starters_and_Other_Manufacturer_Tips|mixed culture starters]] section for more information on starters for mixed cultures.
 
===Bottling and Kegging===
See the [[Packaging]] page.
==Quality Assurance and Avoiding Cross Contamination==
===External Resources===
* [https://aem.asm.org/content/86/14/e00566-20.full "Microbial Dynamics in Traditional and Modern Sour Beer Production," a peer reviewed review of the role of microbes in sour beer production with a focus on lactobacilli.]
* [http://www.themadfermentationist.com/2009/11/brewing-sour-beer-at-home.html Brewing Sour Beer at Home. The Mad Fermentationist. Michael Tonsmeire.]
* [http://livestream.com/thebrewingnetwork/events/4356345/videos/100194897?origin=digest&mixpanel_id=13f72600236692-0c4b4ffd9-1b15485e-1fa400-13f72600237958&acc_id=14489005&medium=email Saison panel at GABF 2015 including mixed-fermentaiton saisons.]
* [http://sourbeerblog.com/fundamentals-of-sour-beer-fermentation/ "Fundamentals of Sour Beer Fermentation" on Sour Beer Blog.]
* [https://www.youtube.com/watch?v=kBzb5gH0Qjo "Exploring the Wider Potential of Hops, Saison, and Brett" with Chad Yakobson from Crooked Stave via the Craft Beer and Brewing YouTube channel.]
* [https://www.youtube.com/watch?v=zZClitibAJ8 "Dialing in Mouthfeel and Bitterness in Brett Saisons" with Chad Yakobson from Crooked Stave via the Craft Beer and Brewing YouTube channel.]
* [https://www.youtube.com/watch?v=7A7_OZPCSbs "Grist and Mash Choices for Mixed-Culture Farmhouse Beers" with Chad Yakobson from Crooked Stave via the Craft Beer and Brewing YouTube channel.]
==References==

Navigation menu