Changes

Jump to: navigation, search

Mixed Fermentation

646 bytes added, 15:10, 14 May 2018
added link to Brulosophy experiment
During both primary and secondary fermentation, a complex set of interactions occurs between the various yeast and bacteria species. Much of this is yet unknown scientifically. For example, the production of [[Lactic Acid|lactic acid]] by lactic acid bacteria not only stresses and limits growth of ''S. cerevisiae'', but it can also turn off "glucose repression", meaning that instead of consuming simple sugars first, ''S. cerevisiae'' stops choosing which sugar types to consume first and consumes all sugar types indiscriminately. This can result in under-attenuation problems in the short run, but also more residual sugars for ''Brettanomyces'' (see [[Lactic Acid|lactic acid]] for details). Another example is that co-fermenting with brewer's yeast and ''Lactobacillus'' can create a different flavor profile than if they are staggered with a kettle souring method (see [[Lactobacillus#Effects_on_Mixed_Fermentation|effects of ''Lactobacillus'' on mixed fermentation]]). Another example is that some studies support that in nitrogen rich substrates, ''S. cerevisiae'' will synthesize simpler amino acids from the more complex nitrogen sources, and those amino acids contribute to the sustained survival of both ''Lactobacillus'' and ''Brettanomyces'' in the more stressful, post-fermentation environment <ref>[https://academic.oup.com/femsyr/article-abstract/17/4/fox018/3867021/The-influence-of-Dekkera-bruxellensis-on-the?redirectedFrom=fulltext The influence of Dekkera bruxellensis on the transcriptome of Saccharomyces cerevisiae and on the aromatic profile of synthetic wine must. Janez Kosel Neža Čadež Dorit Schuller Laura Carreto Ricardo Franco-Duarte Peter Raspor. 2017.]</ref><ref>[http://www.sciencedirect.com/science/article/pii/S2405471217303903?via%3Dihub Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Olga Ponomarova, Natalia Gabrielli, Daniel C.Sévin, Michael Mülleder, Katharina Zirngibl, Katsiaryna Bulyha, Sergej Andrejev, Eleni Kafkia, Athanasios Typas, Uwe Sauer, Markus Ralser, Kiran Raosaheb Patil. 2017.]</ref> (see also [https://www.facebook.com/groups/MilkTheFunk/permalink/1856920997669439/ this MTF thread]).
 
See also:
* [http://brulosophy.com/2018/05/14/mixed-fermentation-combined-vs-staggered-microbe-pitch-exbeeriment-results/ Brulosophy experiment comparing co-pitching versus staggered pitching]. Note that oxygen exposure during the staggered pitch is another variable in this experiment that could account for some of the differences between the two beers <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2093241697370700/?comment_id=2093637253997811&comment_tracking=%7B%22tn%22%3A%22R%22%7D Dan Pixley. Milk The Funk Facebook thread on the "MIXED FERMENTATION: COMBINED VS. STAGGERED MICROBE PITCH" blog post. 05/14/2018.]</ref>.
====Secondary Fermentation====

Navigation menu