Changes

Jump to: navigation, search

Nonconventional Yeasts and Bacteria

2,221 bytes added, 16:08, 5 November 2022
no edit summary
|-
| ECY45 BugFarm 2 || Kveik ''Saccharomyces'', ''Brettanomyces'', ''Lachancea thermotolerans'' (Origin: grapes), and ''Lactobacillus'' || || || || Described by ECY as producing "citrusy" sour beers <ref>[http://www.eastcoastyeast.com/wild-stuff.html East Coast Yeast website. Wild Yeast / Brettanomyces / Lactic Bacteria. Retrieved 03/27/2021.]</ref>.
|-
|}
 
===[[Escarpment Laboratories]]===
{| class="wikitable sortable"
|-
! Product Name !! Taxonomy !! Attenuation !! Flocculation !! Starter Note !! Fermentation/Other Notes
|-
| Lactic Magic || ''Lachancea thermotolerans'' || || || || Added glucose (dextrose) is required for lactic acid production. To drop pH below 4.0, you must add 2.5-5% dextrose by volume (that's roughly equal to 2.5-5ºP or 0.012-0.020 gravity points, or 25-50kg in a 10hL batch). See [https://escarpmentlabs.com/products/lactic-magic?_pos=1&_sid=980974c5f&_ss=r the product page].
|-
|}
==Yeasts==
===''Candida'' spp===
 
====''Candida glabrata''====
A strain of ''Candida glabrata'' was selected in a study for its high beta-glucosidase activity, its tolerance to ethanol, and its ability to utilize maltose, and was shown to produce novel flavor characteristics in beer fermentation, including a significant increase in geraniol <ref>[https://www.sciencedirect.com/science/article/abs/pii/S0308814622026887#f0020 Application of non-Saccharomyces yeasts with high β-glucosidase activity to enhance terpene-related floral flavor in craft beer. Xiaoyu Han, Qiuxing Qin, Chenyu Li, Xiaoxuan Zhao, Fangxu Song, Mengjiao An, Ying Chen, Xiuqin Wang, Weidong Huang, Jicheng Zhan, Yilin You. 2022.]</ref>.
===''Cyberlindnera'' spp.===
===''Kluyveromyces''===
- https://www.sciencedirect.com/science/article/abs/pii/S0740002022001782
 
Many species of ''Kluyveromyces'' have been to biotransform monoterpenes found in hop oils (see [[Hops#Hop_Derived_Compounds_In_Beer_and_Biotransformations|Hop Biotransformations]]).
* [https://www.facebook.com/groups/MilkTheFunk/permalink/3361360907225433/ MTF write ups by Cory Widmayer of the fermentation process for traditional Jamaican rum, with an emphasis on aromatic mold (''Thielaviopsis ethacetica'') and ''Schizosaccharomyces pombe''.]
* [https://www.facebook.com/groups/592560317438853/?multi_permalinks=4925298390831669 MTF post by Cory Widmayer on isolation and identification techniques for ''S. pombe''.]
* [https://www.facebook.com/groups/MilkTheFunk/posts/49348873898727695842191532475679/ Cory Widmayer's experiments and guide brewing beer with ''S. pombe'' (see comments for links to Cory's other threads).]
===''Torulaspora delbrueckii''===
====General Information====
An analysis was done on 10 different ''T. delbruckiidelbrueckii'' strains on various types of stress resistance as well as the ability to metabolize different carbon sources. The strains tested and the results are shown below.
<ref name="10 strain TD">[http://onlinelibrary.wiley.com/doi/10.1002/yea.3146/full . Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Maximilian Michel, Jana Kopecká. 2016.]</ref>
{| class="wikitable sortable"
|-
! Designation <ref name="10 strain TD"></ref> !! Strain number/signature !! Origin
|-
| T6 || RIBMa TdA || Wine
|-
|}
<ref name="10 strain TD">< See also:* [http:/ref>/thebrulab.libsyn.com/episode-065-cold-contact-fermentation-with-t-delbrueckii-w-dr-brian-gibson Bru Lab Podcast Episode 065 | Cold Contact Fermentation With T. Delbrueckii w/ Dr. Brian Gibson.] 
=====Hop Resistance=====
====''Oenococcus oeni''====
https://www.academia.edu/27927068/Evidence_for_exopolysaccharide_production_by_Oenococcus_oeni_strains_isolated_from_non_ropy_wines?email_work_card=title
''Oenococcus oeni''(also know as ''Leuconostoc oeni'') is a Genus of Gram-positive LAB, ellipsoidal to spherical in shape that is primarily used in Malolactic Fermentation. ''Oenococcus oeni'' is a facultative anaerobe. It is able to use oxygen for cellular respiration but can also gain energy through fermentation. It characteristically grows well in the environments of wine, being able to survive in acidic conditions below pH 3.0 and tolerant of ethanol levels above 10%. Optimal growth occurs on sugar and protein rich media. Cells tend to grow in chains or pairs. ''O. Oeni'' is heterofermentative and generally produces CO2, Ethanol, Acetate, and Diacetyl. <ref name="MicrobeWikiOO">[https://microbewiki.kenyon.edu/index.php/Oenococcus_oeni "Oenococcus oeni". Microbe Wiki. Retrieved 07/20/2017.]</ref>
Althought ''O. oeni'' has primarily been used for Malolactic Fermentation, trials with the White Labs culture(only one reported on so far) has show lactic acid production without the presence of malic acid. James Sites reported souring within a week at 70°F. <ref name="post">[https://www.facebook.com/groups/MilkTheFunk/permalink/1121887807839432/ James Site. Milk The Funk Facebook group. 08/04/2015.]</ref>
 
This species can also produce exopolysaccharides (EPS) similar to [[Pediococcus]], but in most wines the levels of EPS do not make wine ropy <ref>[https://www.academia.edu/27927068/Evidence_for_exopolysaccharide_production_by_Oenococcus_oeni_strains_isolated_from_non_ropy_wines?email_work_card=title Ciezack, G. et al. “Evidence for Exopolysaccharide Production by Oenococcus Oeni Strains Isolated from Non-Ropy Wines.” Journal of Applied Microbiology 108.2 (2010): 499–509. Web.]</ref>.
{| class="wikitable sortable"

Navigation menu