Changes

Jump to: navigation, search

Quality Assurance

181 bytes added, 12:37, 2 April 2018
no edit summary
Bacteria and yeast form a biofilm in two stages, which are determined by a number of variables. In the first stage, the microbes remain in their [http://www.dictionary.com/browse/planktonic|"planktonic"] form (floating around in the liquid), but they begin to adhere on surfaces and to each other as those surfaces. Other species of microbes can also be adhered to during this phase. The second stage is where the microbes start producing exopolysaccharides (EPS) which helps them bind together in a matrix, along with any available proteins and exopolymers produced by the bacteria. A large portion of biofilms is actually water (80-80%) as this allows the microbes to remove waste and consume nutrients. This matrix helps the microbes resist antibiotics, UV radiation, and cleaning chemicals. Gene exchange also occurs more frequently. At the end of this second stage, the microbes become attached to surfaces in such a way that is permanent without the use of cleaning chemicals. This is known as the microbe's [http://www.dictionary.com/browse/sessile|"sessile"] form (immobile). Bacteria in this form continue to multiply, and upon maturation of the biofilm, eventually, planktonic cells begin to be produced and released from the biofilm to find new homes. They also display different phenotypes, which might contribute to their ability to resist cleaning chemicals. Rough or scratched surfaces are more prone to biofilm formation due to the higher surface area. Hydrophobic surfaces, such as Teflon and other plastics) are more prone to biofilm formation than hydrophilic surfaces (glass and metal) <ref>Biofilms in the Food and Beverage Industries. P M Fratamico, B A Annous, N W Guenther. Elsevier, Sep 22, 2009. Pp 4-14.</ref>. Biofilms can form within 2-4 days <ref name="Wirtanen_2001">[https://www.researchgate.net/publication/273439407_Disinfectant_testing_against_brewery-related_biofilms. Disinfectant testing against brewery-related biofilms. Erna Storgårds, Gun Wirtanen. 2001.]</ref>.
The efficacy of different chemicals to kill microbes within a biofilm isn't widely studied in the brewing or wine industries, partly because testing procedures are laborious and difficult to standardize. One study found that alcohol-based disinfectants (ethanol and isopropyl alcohol) were effective at killing microbes within a biofilm, and peracetic acid disinfectants were not as effective. A higher concentration of peracetic acid (from 0.25% to 1% of products containing 4-15%) was required to be more effective than lower concentrations. However, these disinfectants did not kill all of the cells without a cleaning regiment first. Yeast biofilms, in general, are more susceptible to cleaning chemicals than bacteria biofilms . Biofilms that are formed under static conditions (still or dried up liquid) are more resistant to disinfectants than biofilms that form under flow conditions (movement of liquid) <ref name="Wirtanen_2001" />.
===Methods For Avoiding Contamination===

Navigation menu