Changes

Jump to: navigation, search

Quality Assurance

2 bytes added, 15:44, 23 May 2018
no edit summary
==Overview==
While most microorganisms cannot survive in beer due to the hops, low pH, alcohol content, relatively high carbon dioxide, and shortage of nutrients, certain species are considered to be beer spoilage organisms due to their ability to adapt to brewing conditions (namely hops) and to form biofilms and survive in beer and make a potential impact on the beer's flavor by producing acidity, phenols, turbidity, and/or super-attenuation (which can cause gushing or in extreme cases exploding bottles/cans) with just a few surviving cells. Bacteria species that have adapted to the brewing environment tend to be hop tolerant, but strains of the same species found outside of breweries are not tolerant of brewing conditions. It is thought that these species evolved to carry the genes to adapt to brewing conditions during the 5th to 9th centuries when hops were first being used in brewing, and that this evolution gave them a specialized adaption to the brewing environment where few competitors can survive <ref name="Suzuki_2012">[https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2050-0416.2011.tb00454.x 125th Anniversary Review: Microbiological Instability of Beer Caused by Spoilage Bacteria. Ken Suzuki. 2012. DOI: https://doi.org/10.1002/j.2050-0416.2011.tb00454.x]</ref>.  Species of yeast and bacteria that are considered beer spoilers include [[Brettanomyces|''Brettanomyces'']] species, numerous [[Lactobacillus|''Lactobacillus'']] species, ''Pediococcus damnosus'', ''Pectinatus cerevisiphilus'' (anaerobe responsible for 20-30% of bacterial contaminations that produces acetic acid, propionic acid, acetoin, and 'rotten egg' like odors in contaminated beer), ''Pectinatus frisingensis'', ''Megasphaera cerevisiae'' (7% of bacterial contaminations; inhibited below pH 4.1 and 2.8% ABV but can produce considerable amounts of [[Butyric Acid|butyric acid]] along with smaller amounts of acetic acid, caproic acid, [[Isovaleric Acid|isovaleric acid]], acetoin, and hydrogen sulphide), ''Selenomonas lactifex'', ''Zymophilus'' spp., [[Saccharomyces#Saccharomyces_cerevisiae_var._diastaticus|''Saccharomyces cerevisiae'' var. ''diastaticus'']], and some species from the ''Candida'' and ''Pichia'' genera. Hop tolerant lactic acid bacteria make up the majority of contamination issues in breweries, with ''L. brevis'' making up more than half of the reported contaminations, and all lactic acid bacteria making up 60-90% of reported contaminations. A new species of ''Lactobacillus'' was recently identified called ''L. acetotolerans'' and was [https://www.facebook.com/groups/MilkTheFunk/permalink/1363048380390039/ responsible for contaminating Goose Island's Bourbon County Stout], which is 60 IBU and 11% ABV. In sour beers with a pH below 4.3, only some lactic acid bacteria, ''Brettanomyces'', and some wild ''Saccharomyces'' have the potential for unwanted growth, while beers with low alcohol, a small amount of hops, lower CO<sup>2</sup> volumes (cask ales and beers dispensed with nitrogen, for example), and higher pH (4.4-4.6) are the most susceptible to contamination. ''Zymomonas mobilis'' is a microaerophilic Gram-negative acetic acid bacteria that can withstand hops and can grow in bottled beer or casks where priming sugar is added and small amounts of air is present and produces high levels of acetaldehyde and hydrogen sulphide <ref name="Vaughan_2005">[https://onlinelibrary.wiley.com/doi/full/10.1002/j.2050-0416.2005.tb00221.x Enhancing the Microbiological Stability of Malt and Beer — A Review. Anne Vaughan, Tadhg O'Sullivan, Douwe Van Sinderen. 2005. DOI: https://doi.org/10.1002/j.2050-0416.2005.tb00221.x.]</ref>.
Other species of microbes do not grow in beer but can become contaminants earlier on in the brewing process (for example during kettle souring). These species include enterobacteria such as ''Clostridium'' species, ''Obesumbacterium proteus'' and ''Rahnella aquatilis'', and wild ''Saccharomyces'' that might not be able to grow in finished beer. Other species are considered "indicator" species because they do not directly cause spoilage of beer, but indicate that there is a hygiene problem. These include ''Acetobacter'', ''Gluconobacter'', and ''Klebsiella'' species, as well as aerobic yeasts, all of which usually don't have an impact when present unless oxygen is also present. They can also produce slime that protects other microorganisms that can have a greater impact on the beer's stability <ref name="Wirtanen_2001">[https://www.researchgate.net/publication/273439407_Disinfectant_testing_against_brewery-related_biofilms. Disinfectant testing against brewery-related biofilms. Erna Storgårds, Gun Wirtanen. 2001.]</ref><ref name="Bokulich_2018">[https://www.tandfonline.com/doi/abs/10.1094/ASBCJ-2012-0709-01 A Review of Molecular Methods for Microbial Community Profiling of Beer and Wine. Nicholas A. Bokulich, Charles W. Bamforth & David A. Mills. 2018.]</ref>. Some species can contaminate yeast pitches. ''Pediococcus damnosus'' is frequently the cause of such contaminations and can cause diacetyl problems, as well as ''Pediococcus inopinatus'', ''Pediocococcus claussenii'', ''L. casei'', ''Selenomonas lacticifex'', and ''Zymophilus raffinosivorans'' (although these are rarer to find in finished beer). ''Obesumbacterium proteus'' (which gives a parsnip-like smell and flavor) and ''Rahnella aquatilis'' can contaminate yeast pitches, and can inhibit fermentation and result in the beer finishing at a higher pH <ref name="Vaughan_2005" />.

Navigation menu