Changes

Jump to: navigation, search

Saccharomyces

60 bytes added, 12:59, 5 February 2019
no edit summary
In ''Saccharomyces cerevisiae'', four toxins have been identified: K1, K2, K28, and Klus, the first three of which can only kill other strains/species of ''Saccharomyces''. The Klus toxin has been found to kill all strains of ''S. cerevisiae'' (including those that produce the previous three toxins), as well as yeast from other genera, such as ''Hanseniaspora spp.'', ''Kluyveromyces lactis'', ''Candida albicans'', ''Candida dubliniensis'', ''Candida kefir'' and ''Candida tropicalis'' <ref name="Rodriguez">[http://aem.asm.org/content/77/5/1822.long A New Wine Saccharomyces cerevisiae Killer Toxin (Klus), Encoded by a Double-Stranded RNA Virus, with Broad Antifungal Activity Is Evolutionarily Related to a Chromosomal Host Gene. Nieves Rodríguez-Cousiño, Matilde Maqueda, Jesús Ambrona, Emiliano Zamora, Rosa Esteban and Manuel Ramírez. 2011]</ref>. The K1 toxin is most active between a pH of 4.6 and 4.8, while K2 and Klus are active around a pH of 4.0 to 4.3 <ref name="Rodriguez"></ref>. The activity of the toxin is greatest during the log phase of growth, and decays during the stationary phase of fermentation <ref name="Buyuksirit"></ref>. Generally, none of the toxins secreted by killer strains of ''Saccharomyces'' have been found to kill ''Brettanomyces'' <ref>[http://www.scielo.org.za/scielo.php?pid=S2224-79042015000100010&script=sci_arttext&tlng=pt Non-Saccharomyces killer toxins: Possible biocontrol agents against Brettanomyces in wine? S. Afr. J. Enol. Vitic. vol.36 n.1 Stellenbosch. 2015.]</ref>. One study from India reported that a wild ''S. cerevisiae'' strain caught from flowers killed another wild caught strain of ''Brettanoyces anomulus'', however, their methodology was not explicit and potentially not scientifically rigorous enough <ref>[http://nopr.niscair.res.in/handle/123456789/7735 Production and effect of killer toxin by Saccharomyces cerevisiae and Pichia kluyveri on sensitive yeasts and fungal pathogens. Dabhole, Madhusudan P, Joishy, K N. 2005.]</ref>. For example, this study did not use DNA fingerprinting to identify the wild yeast strains used in the study and instead relied on morphology and media selection, and they did not identify the type of toxin produced by the killer strain of wild ''S. cerevisiae''. They also reported that the ''B. anamulus'' strain did not ferment glucose, which is not typical for this species.
Several strains of ''Saccharomyces eubayanus'' isolated from seeds from monkey puzzle trees in Patagonia, Argentina, were found to secrete a killer toxin that kills ''Brettanomyces'' and ''Pichia''. One strain was found to produce a lot of the toxin, which is called "SeKT". ''S. cerervisiae'' strains, including strains that are sensitive to the above toxins, are not sensitive to this toxin. Mazzucco et al. (2019) found that SeKT toxin produced by this one strain of ''S. eubaynus'' in a special growth medium designed to maximize the SeKT toxin production (WUJ medium, which is "ultrafiltered" apple and pear juice) inhibited a strain of ''B. bruxellensis'' to around 50% growth after 48 hours in a wine growth medium. It also inhibited ''Pichia guilliermondii'', ''Pichia manshurica'', and ''Pichia membranifaciens'' by 50-70%. Since ''S. cerevisiae'' strains are not effected by the SeKT toxin, it has been proposed as a way to limit ''Brettanomyces'' and ''Pichia'' in wine fermentations <ref>[https://www.ncbi.nlm.nih.gov/pubmed/30671692?dopt=Abstract Production of a novel killer toxin from Saccharomyces eubayanus using agro-industrial waste and its application against wine spoilage yeasts. Mazzucco MB, Ganga MA, Sangorrín MP. 2019. DOI: 10.1007/s10482-019-01231-5.]</ref>.
Various other yeast species have the ability to produce toxins that effect a range of other yeasts (but generally not bacteria), including species from the genera ''Candida'', ''Cryptococcus'', ''Debaryomyces'', ''Hanseniaspora'', ''Hansenula'', ''Kluyveromyces'', ''Metschnikowia'', ''Pichia'', ''Ustilago'', ''Torulopsis'', ''Williopsis'', ''Zygosaccharomyces'', ''Aureobasidium'', ''Zygowilliopsis'', and ''Mrakia'' <ref name="Buyuksirit">[http://waset.org/publications/9999528/antimicrobial-agents-produced-by-yeasts Antimicrobial Agents Produced by Yeasts. T. Buyuksirit, H. Kuleasan. 2014.]</ref><ref name="Stewart_2018" />. For example, strains of the yeast species ''Candida pyralidae'' <ref name="Buyuksirit"></ref>, ''Wickerhamomyces anomalus'', ''Kluyveromyces wickeramii'', ''Torulaspora delbrueckii'' and ''Pichia membranifaciens'' have been found to produce toxin that inhibits ''Brettanomyces'' <ref name="Ciani_2016">[https://www.researchgate.net/publication/301581233_Yeast_Interactions_in_Inoculated_Wine_Fermentation Yeast Interactions in Inoculated Wine Fermentation. Maurizio Ciani, Angela Capece, Francesca Comitini, Laura Canonico, Gabriella Siesto and Patrizia Romano. 2016.]</ref>. In addition, the toxin produced by ''Wickerhamomyces anomalus'' and ''Williopsis markii'' have been found to inhibit a wide range of spoilage and pathogenic fungi <ref name="Hatoum2012"></ref>. Killer strains of ''S. cerevisiae'' and other yeast can occur naturally in the wild on fruit and can have a negative impact on other flora that are found in the same environment <ref name="Buyuksirit"></ref>. Strains of ''Torulaspora delbrueckii'' have been shown to kill killer strains of ''S. cerevisae'' (wine strains), as well as to kill ''Pichia'' species <ref name="Ciani_2016"></ref>. The occurrence of killer strains of yeast in the wild is also wide spread. For example, out of 210 yeasts from various genera isolated from molasses, 13 of them were killer strains. Out of 1,000 isolates of various ''Candida'' species isolated from human skin, 52 were killer strains. Out of 65 strains of various yeasts isolated from fermented foods, soil samples, and spoiled fruits/vegetables, 12 were killer strains <ref name="Bajaj_2017" />.

Navigation menu