Changes

Jump to: navigation, search

Wort Souring

19 bytes added, 23:31, 5 July 2019
no edit summary
The brewing process is the same for any all-grain batch up until the first wort and sparge runnings are collected in the boil kettle. The temperatures that a typical mash out/sparge are not enough to completely pasteurize the wort <ref>[https://onlinelibrary.wiley.com/doi/epdf/10.1002/j.2050-0416.2005.tb00221.x Enhancing the Microbiological Stability of Malt and Beer – A Review. Anne Vaughan, Tadhg O’Sullivan and Douwe van Sinderen. 2005.]</ref><ref>[https://elifesciences.org/articles/04634 Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance. Nicholas A Bokulich, Jordyn Bergsveinson, Barry Ziola, David A Mills. 2015.]</ref><ref>[http://mmbr.asm.org/content/77/2/157.full The Microbiology of Malting and Brewing. Nicholas A. Bokulich and Charles W. Bamforth. 2013. DOI: 10.1128/MMBR.00060-12.]</ref>. Therefore, the best approach is to heat the wort for a short boil (1-2 minutes) in order to kill a greater degree (2-3 logs more) of thermotolerant microbes <ref name="Heit_boiling">[https://www.facebook.com/groups/MilkTheFunk/permalink/1180630378631841/?comment_id=1180634488631430&reply_comment_id=1180677581960454&comment_tracking=%7B%22tn%22%3A%22R2%22%7D Conversation with Bryan of Sui Generis Blog regarding boiling versus lower temperature pasteurization. 11/18/2015.]</ref><ref>[http://sourbeerblog.com/lactobacillus-2-0-advanced-techniques-for-fast-souring-beer/ ''Lactobacillus'' 2.0 – Advanced Techniques for Fast Souring Beer. 11/18/2015. Retrieved 11/19/2015.]</ref><ref name="pasteurization">[http://www.mbaa.com/meetings/districtpresentations/DistrictPresentations/2011_03_10PasteurizationTechnologies.pdf "District Michigan MBAA Technical Meeting Grand Ledge, MI". MBAA Presentation. 2011.]</ref>. Once all of the wort is collected in the boil kettle (and preferably brought to a boil), the wort is chilled to around 80-115°F (37-46°C), depending on the ''[[Lactobacillus]]'' culture that is being used (see the [[Lactobacillus#Culture_Charts|''Lactobacillus'' culture charts]]). Once chilled to the appropriate temperature, the wort in the kettle is inoculated with a culture of ''Lactobacillus''. Hops should not be added at any point before inoculating the wort with a culture of ''Lactobacillus'' as most species of ''Lactobacillus'' will be inhibited by the presence of even very small amounts hops (1-2 IBU or even just hop material from dry hopping). When using a pure culture of ''Lactobacillus'', it is generally a good idea to [[Lactobacillus#Starters_and_Pitching_Rate|create a 500 mL starter]] for ~5-6 gallons of wort.
There are various ways of inoculating the wort. A reliable method is pitching a pure culture of ''Lactobacillus'' or a blend of ''Lactobacillus'' cultures. Alternatively, a handful of unmilled malted barley can be added to the kettle for inoculation, similar to how [http://www.lowoxygenbrewing.com/ingredients/a-sauergut-reactor/ sauergut] is made, instead of a pure culture since the husks of [[Grain|grain]] carry many microorganisms. If unmilled grain is added it is thought that filling the head space of the kettle with CO<sup>2</sup> (or another gas like argon or nitrogen; always provide proper ventilation when working with any gasses <ref>[https://www.brewersassociation.org/press-releases/brewers-publications-presents-gose-brewing-a-classic-german-beer-for-the-modern-era/ Allen, Fal. "Gose: Brewing a Classic German Beer For the Modern Era". Brewers Publications. 2018. Pg 126.]</ref><ref>[https://beerandbrewing.com/dictionary/DfG8FdFjfm/nitrogen/ Nick R Jones. "The Oxford Companion to Beer definition of nitrogen". Craft beer & Brewing Magazine website. Retrieved 10/21/2018.]</ref>) will help decrease off-flavors such as "footiness" from [[Isovaleric Acid]] which are produced by aerobic microbes that are naturally present on the grain <ref name="khris_johnson">Personal correspondence with Khristopher Johnson of Green Bench Brewing Co. and Dan Pixley. 05/24/2016.</ref>. Keeping the temperature between 109-115°F (42.8-46°C) will encourage the ''Lactobacillus'' resident on the grain and will discourage other bacteria. Temperature consistency is critical during this process <ref name="young_grains">[https://www.facebook.com/groups/MilkTheFunk/permalink/1356058381089039/?comment_id=1356464531048424&comment_tracking=%7B%22tn%22%3A%22R%22%7D Conversation with Jeff Young from Blue Owl Brewing Co on souring from grains. 07/21/2016.]</ref>. Lowering the pH of the [[Wort_Souring#How_to_Pre-Acidify|wort to under 4.5 (ideally 4.0 - 4.3)]] will also discourage other unwanted bacteria and wild yeast from thriving in the wort during the incubation period. This will also help with head retention <ref>[[Lactobacillus#Foam_Degradation]]</ref>. Souring with grains should occur within 1 or 2 days if done correctly <ref name="young_grains"></ref>. Do not consume wort that has been soured with grains until after it has been fully fermented by yeast because there is a chance that food poisoning pathogens will be present until ethanol is produced. See [[Grain#Malt_Inoculated_Wort|Blue Owl Brewing's grain inoculation methodology and data]] for more information on inoculating with grain. Consider [[Alternative Bacteria Sources]] for more reliable approaches to using "wild" ''Lactobacillus'', or ''Lactobacillus'' from sources other than yeast labs.
If a pure culture of ''Lactobacillus'' bacteria is used it has historically been recommended to fill the head space of the fermenter with CO<sup>2</sup> gas or another type of gas like argon or nitrogen to purge the oxygen (oxygen does not cause ''Lactobacillus'' to produce [[Butyric Acid|butyric acid]] or [[Isovaleric Acid|isovaleric acid]], but some brewers have reported that purging oxygen will help reduce sulfur in the finished beer). Purging oxygen could also discourage [[Mold|mold]] growth. Mold growth during the souring process has been reported from time to time by homebrewers, and if mold grows in contact with the wort then it probably should be discarded (see the [[Mold]] page for more information) <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2144219142272955/ Pavel Dunn. Milk The Funk Facebook group thread on mold growth during kettle souring. 06/23/2018.]</ref>. However, many homebrewers and some professional brewers have reported having success without purging with CO<sup>2</sup> <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1778865588808314/ Various members of Milk The Funk. Milk The Funk Facebook thread on purging kettle sours with CO<sup>2</sup>. 08/03/2018.]</ref><ref>[https://www.milkthefunk.live/podcast/2018/4/2/episode-004-kettle-souring-with-adi-hastings-from-omega-yeast-labs Adi Hastings. Milk the Funk "The Podcast"; Episode #004. 04/02/2018. Retrieved 04/16/2018.]</ref>(~20:30 mins in), and a [http://brulosophy.com/2018/04/16/the-impact-of-open-fermentation-on-kettle-sour-beer-exbeeriment-results/ Brulosophy blind triangle test] was unable to find a significant difference between a kettle sour that was CO<sup>2</sup> purged and one that was soured in an open vessel. Using some CO<sup>2</sup> to keep positive pressure in the kettle could help prevent contaminants that create [[Butyric Acid|butyric acid]] and other off-flavors from entering the kettle due to negative pressure, and is often the approach that commercial brewers take <ref>Personal correspondence with Steph Cope of CraftHaus Brewing Co. 02/06/2016.</ref>. The kettle should be held at the desired temperature for 24-72 hours (in some cases longer, but no longer than 5 days). Depending on the strain of ''Lactobacillus'', and the desired sour level, the time of incubation is ultimately a variable that is up to the brewer (see the ''[[Lactobacillus]]'' page for suggested temperatures and times for specific strains). The kettle lid should be firmly in place and optionally sealed with plastic wrap so that other microorganisms do not get in. Potential for the formation of [[Butyric Acid]] and [[Isovaleric Acid]] when using only a pure culture is extremely slight assuming that contamination does not occur. Temperature shifts during kettle souring are not a concern as long as the temperature does not get too high or low for the specific ''Lactobacillus'' culture. Some species, such as ''L. plantarum'', create acidity at room temperature so some brewers will pitch this strain at around 90-100°F and let the temperature fall to room temperature during souring. Other species might not perform as well at colder temperatures so maintaining a fairly consistent hot temperature is desirable. If the temperature is allowed to fall, take precautions on not allowing any dust to get sucked into the fermenter since temperature decreases will create a vacuum inside the fermenter (flushing with CO<sup>2</sup> is a good way to prevent a vacuum).

Navigation menu