Difference between revisions of "Berliner Weissbier"
Line 20: | Line 20: | ||
:''Editor's note: much of this information has been provided by Thomas Hübbe, and based on his [https://www.facebook.com/groups/MilkTheFunk/1407620505932826/ master's thesis].'' | :''Editor's note: much of this information has been provided by Thomas Hübbe, and based on his [https://www.facebook.com/groups/MilkTheFunk/1407620505932826/ master's thesis].'' | ||
− | Information regarding the microbiology of historical Berliner Weisse is rare. A study from F. Schönfeld in 1938 describes the proportion of yeast cells to lactic acid bacteria cells through the first stages of fermentation. He describes the ratio as being 4:1 (yeast to lactic acid bacteria) at pitching time. After 18 hours, yeast saw growth, but after 40 hours the yeast population began to decline as attenuation completed. Another later study found that this ratio favors yeast growth, which hinders lactic acid bacteria growth and the production of lactic acid. Poor management of the microbes was blamed for not achieving enough acidity and was described as being a common problem in Berliner Weisse, as well as not achieving enough carbonation in the bottle. Berliner Weisse producers developed many methods for trying to achieve a certain kind of flavor profile in Berliner Weisse, which has been compared to that of [[Lambic]] and [[Gueuze]]. Indeed, an early study on Berliner Weisse by Methner in the 1980's discovered that ''[[Brettanomyces]]'' was a typical and important part of the flavor profile of Berliner Weisse <ref name="Hubbe"></ref>. The flavor of Berliner Weisse was described as being flowery and fruity, and a product of ester formation by ''Saccharomyces'' and ''Brettanomyces'' (see [[Brettanomyces#Ester_Production|''Brettanomyces'' esters]]) <ref name="Hubbe"></ref>. | + | Information regarding the microbiology of historical Berliner Weisse is rare. A study from F. Schönfeld in 1938 describes the proportion of yeast cells to lactic acid bacteria cells through the first stages of fermentation. He describes the ratio as being 4:1 (yeast to lactic acid bacteria) at pitching time. After 18 hours, yeast saw growth, but after 40 hours the yeast population began to decline as attenuation completed. Another later study found that this ratio favors yeast growth, which hinders lactic acid bacteria growth and the production of lactic acid. Poor management of the microbes was blamed for not achieving enough acidity and was described as being a common problem in Berliner Weisse, as well as not achieving enough carbonation in the bottle. Berliner Weisse producers developed many methods for trying to achieve a certain kind of flavor profile in Berliner Weisse, which has been compared to that of [[Lambic]] and [[Gueuze]]. Indeed, an early study on Berliner Weisse by Methner in the 1980's discovered that ''[[Brettanomyces]]'' was a typical and important part of the flavor profile of Berliner Weisse <ref name="Hubbe"></ref>. The flavor of Berliner Weisse was described as being flowery and fruity, and a product of ester formation by ''Saccharomyces'' and ''Brettanomyces'' (see [[Brettanomyces#Ester_Production|''Brettanomyces'' esters]]) <ref name="Hubbe"></ref>. See Benedikt Koch's [https://docs.google.com/spreadsheets/d/1CNrO46TPSFpjhO3HX1-CbKK5rhFd7uGWdpONf7AJAlU/edit#gid=0 compilation of esters found in traditional Berliner Weisse] with ''Brettanomyces'' versus Kindl Weisse that is kettle soured and Belgian gueuze. |
The most common lactic acid bacteria found in historical Berliner Weisse was ''Lactobacillus brevis'', although other species such as ''L. parabrevis'' were also used. ''Brettanomyces'' species often found in Berliner Weisse includes ''B. bruxellensis'' and ''B. anomalus''. ''S. cerevisiae'' (ale) strains were the primary fermenting yeast <ref name="Hubbe"></ref>. | The most common lactic acid bacteria found in historical Berliner Weisse was ''Lactobacillus brevis'', although other species such as ''L. parabrevis'' were also used. ''Brettanomyces'' species often found in Berliner Weisse includes ''B. bruxellensis'' and ''B. anomalus''. ''S. cerevisiae'' (ale) strains were the primary fermenting yeast <ref name="Hubbe"></ref>. |
Revision as of 12:31, 20 August 2018
Berliner Weisse is a top-fermented, bottle conditioned wheat beer made with both traditional warm-fermenting yeasts and Lactobacillus culture. Although many modern new world examples are kettle soured and not fermented with Brettanomyces, traditional Berliner Weisse mostly (if not always [1]) underwent a secondary fermentation with Brettanomyces [1][2][3][4]. Traditional examples are described as being generally very sour, clear wheat beers with good head retention [1][2]. Modern American examples are probably equally sour as historical versions, often have a rapidly vanishing head and a clear, pale golden straw-colored appearance, and often lack Brettanomyces character due to using a kettle souring process. The taste is refreshing, tart, sour and acidic, with a lemony-citric fruit sharpness and almost no hop bitterness. In Europe, the label "Berliner Weisse" is protected and can only be named that if it is brewed within the city of Berlin (see Appellation for some details) [5].
Served in wide bulbous stemmed glasses, today tourists in Berlin will often order one as a "Berliner Weisse mit Schuss: Himbeere" or "Berliner Weisse mit Schuss: Waldmeister". These are syrups that are added to make the sourness of Kindl Weisse more palatable, although this is probably not how Berliner Weisse was always served in Germany since Kindl Weisse does not represent other historical forms of Berliner Weisse. Himbeere is raspberry (red) and Waldmeister is woodruff (green).
Typical average alcohol by volume (abv) range: 2.0-5.0%
Contents
Historical
Berliner Weisse originated sometime in the 19th century and evolved throughout its history. Historical Berliner Weisse is thought to consist of barley malt and a high proportion of poorly modified wheat malt (for head retention) in a 1:3 or 1:4 ratio, although at least two German Berliner Weisse breweries in the 1970's used 100% barley malt (the word "weissbier" originally referred to both barley and wheat air-dried malt) [6]. Decoction mashing was also used and was thought to impart better flavor than a single infusion mash. Hops were added to the mash tun during the mashing process or boiled with the decoction. Sometimes the boil was skipped (or boiled for a short time - for considerations on DMS formation, see DMS in raw ale and short boils), and sometimes a traditional boil was used. In the late 19th century The wort was not boiled because brewers thought that this was necessary for the cultures found in the mixed fermentation, however after the turn of the 20th century it was discovered that the microorganisms originated from surfaces in the brewery (although Mike Marcus from Chorlton Brewing Co has isolated L. casei that survived sparging the grain bed, indicating that some lactic acid bacteria can survive sparging temperatures and might have in fact had a souring impact on Berliner Weissbier that was not boiled [1]). The mixed cultures during primary fermentation were made up of S. cerevisiae and lactic acid bacteria in a 4:1 to 6:1 ratio, and was fermented between 25-30°C. The beer was fermented in open vessels until fully attenuated, and then carbonated with 12% krausen for a high, champagne-like carbonation. Top cropping was a regular practice. The beer would continue to develop in the bottle due to Brettanomyces and lactic acid bacteria [2].
Using mixed fermentation in Berliner Weisse production resulted in several problems. Bottling conditioning times could be time intensive, mixed cultures were difficult to keep consistent, longer aged products could become more acidic than intended, and it required more effort. For these reasons, a man named Otto Francke patented a process in 1906 that more or less resembles kettle souring. Unboiled and unhopped wort was cooled to 45-47°C, and then inoculated with a culture of L. delbruekii, and was held until the wort reached the desired pH. The wort was then heated to 80°C to kill the Lactobacillus, cooled, and then ale yeast was pitched. Brettanomyces bruxellensis was added at bottling time. Although this process provided several advantages, it was not widely adopted by Berliner Weisse breweries [7][8].
In 1956, W. Barrach patented a production method of Berliner Weisse that involved blending two different beers. 80% of the wort was pitched with a mixed culture that was maintained by the brewery. The other 20% of the wort was inoculated with L. brevis and incubated at 30°C. The two beers were blended to reach the desired acidity and krausened with fresh wort to create carbonation. After a short conditioning time, the bottles were sterile filtered and then bottled or casked [7].
Berliner Weisse declined after the world wars, and in the 80's and 90's, all but one Berliner Weisse brewery closed. The only surviving historical example, Kindl Weisse, could be argued to be a beer style that does not represent the majority of historical Berliner Weisse. It does not contain Brettanomyces, and Kindl Weisse does not label itself as "Berliner Weisse". Kindl Weisse is brewed in a very deliberate way that requires it to be blended with sugar syrups at serving time, creating more of an "alco-pop" than a traditional Berliner Weisse [9].
The methods mentioned above were just some of the methods that were used to brew Berliner Weisse. For examples of other methods, see the External History Resources section below. For an example of brewing a historical Berliner Weisse at home (scale up for commercial sizes), see Benedikt Koch's "Historic Berliner Weisse – Homebrew Recipe" and its related MTF thread.
Microbiology and Fermentation Profile
- Editor's note: much of this information has been provided by Thomas Hübbe, and based on his master's thesis.
Information regarding the microbiology of historical Berliner Weisse is rare. A study from F. Schönfeld in 1938 describes the proportion of yeast cells to lactic acid bacteria cells through the first stages of fermentation. He describes the ratio as being 4:1 (yeast to lactic acid bacteria) at pitching time. After 18 hours, yeast saw growth, but after 40 hours the yeast population began to decline as attenuation completed. Another later study found that this ratio favors yeast growth, which hinders lactic acid bacteria growth and the production of lactic acid. Poor management of the microbes was blamed for not achieving enough acidity and was described as being a common problem in Berliner Weisse, as well as not achieving enough carbonation in the bottle. Berliner Weisse producers developed many methods for trying to achieve a certain kind of flavor profile in Berliner Weisse, which has been compared to that of Lambic and Gueuze. Indeed, an early study on Berliner Weisse by Methner in the 1980's discovered that Brettanomyces was a typical and important part of the flavor profile of Berliner Weisse [2]. The flavor of Berliner Weisse was described as being flowery and fruity, and a product of ester formation by Saccharomyces and Brettanomyces (see Brettanomyces esters) [2]. See Benedikt Koch's compilation of esters found in traditional Berliner Weisse with Brettanomyces versus Kindl Weisse that is kettle soured and Belgian gueuze.
The most common lactic acid bacteria found in historical Berliner Weisse was Lactobacillus brevis, although other species such as L. parabrevis were also used. Brettanomyces species often found in Berliner Weisse includes B. bruxellensis and B. anomalus. S. cerevisiae (ale) strains were the primary fermenting yeast [2].
Appellation
External History Resources
- Benedikt Koch's "Historic Berliner Weisse – Homebrew Recipe".
- Mashing of Berliner Weisse, and maximizing head retention by Benedikt Koch. See also the associated MTF threads.
- English translation of Dörfel 1947 manuscript on making German Berliner Weisse (translated by Benedikt Koch).
- "Old German Beer Styles," by Ron Pattinson (contains a few obscure sour styles).
- Berliner Weisse, a Local Style Close to Extinction, by Ron Pattinson.
- "Berliner Weisse according to Grenell" by Ron Pattinson.
- "Berliner Weisse according to Grenell Part 2" by Ron Pattinson.
- "Another way of brewing Berliner Weisse" by Ron Pattinson.
- More historical methods for mashing Berliner Weisse by Ron Pattinson.
- "Berliner Weisse and Brettanomyces" by Ron Pattinson.
- "Output of Berliner Weisse 1885 - 1937" by Ron Pattinson.
- Berliner Weissebier in the 1890's" by Ron Pattison.
- Finding evidence that Brettanomyces was in Berliner Weisse, by Ron Pattinson.
- "Berliner Weisse in the UK" by Ron Pattinson.
- Berliner Weissebier in the 1970's" by Ron Pattinson.
- Traditional German Berliner Weisse presentation by B.H. Meyer at 2012 CBC.
- Brewing Berliner Weisse: Moving Beyond Kettle Souring by Jace Marti (HomebrewCon 2017 Seminar).
- "German White", Brau Magazin, Autumn 2015 (translated to English).
- MBAA Podcast - German Sour Beers of the Late 19th Century with Ron Pattinson.
General Best Practices
These steps may not accurately reflect traditional Berliner Weisse brewing, but will help achieve success for new brewers. For example, hops would always be used in traditional Berliner Weisse brewing, but many lab strains are very sensitive to hops and will not sour the beer if exposed to even small amounts of IBUs.
- Don't sour mash. It's too risky for off flavors.
- Do not use any hops if using a hop sensitive species like L. plantarum.
- Limit CO2 and do not aerate before pitching.
- Create a 1 liter Lactobacillus starter for each 5 gallons at least 2 days in advance of brew day.
- Pitch Lactobacillus between 90°F and 110°F depending on your Lactobacillus strain or blend for ~ 1-4 days (for more details see the Wort Souring page).
- Cool down and pitch Saccharomyces and/or a fruity strain of Brettanomyces after Lactobacillus fermentation phase.
- MTF Threads on brewing Berliner Weisse:
Video Presentations
- Perspective on Brewing Berliner Weisse Style Beer, Jess Caudill of Wyeast Labs, NHC 2012 Presentation.
Milk the Funk Berliner Weissbier Recipe
Description
The Milk The Funk Berliner is an 8 gallon recipe for a semi tart, fruity, wheat beer. This recipe is an 8 gallon, no boil recipe, and is made for a system with 73% efficiency. Please adjust the recipe to fit your system.
Stats
- 1.035 OG
- 1.004 FG
- 4.0 ABV
- 1 SRM
- Mash 60min @ 145°f
Fermentables
Malt | Weight | % |
---|---|---|
Floor-Malted Bohemian Wheat (DE) | 3 lbs | 30 |
Floor-Malted Bohemian Pilsner (DE) | 7 lbs | 70 |
Extract Version * | Weight | % |
---|---|---|
Briess CBW® Bavarian Wheat Dried Malt Extract (or similar) | 3 lbs | 50 |
Briess CBW® Pilsen Wheat Dried Malt Extract (or similar) | 3 lbs | 50 |
- * Note about the extract version: Devin Bell has also used 70% wheat DME to 30% pilsner DME and 100% wheat DME with good results. Briess CBW® Bavarian Wheat DME is 65% wheat and 35% barley.
Hops
No hops if possible. Any amount of hops will prevent lactic acid production with Lactobacillus plantarum. If hops have to be used for legal reasons (for commercial breweries, for example):
Hop | Weight | Time | Use | Alpha Acids |
---|---|---|---|---|
Golding (UK) | 2 oz | 10 min | Mash hop, or add after souring | 8 AAU |
Yeast / Bacteria
Name | Laboratory | Product ID | Starter | Attenuation |
---|---|---|---|---|
Lactobacillus Blend (brevis, delbrueckii, and plantarum) * | Omega Yeast Labs | OYL-605 | None | N/A |
Brett Sacc Trois | White Labs | WLP644 | 1 vial in 500 mL DME starter for 5-8 gallons | 87.5 |
- * If OYL-605 is not available, substitute it with a probiotic culture such as Goodbelly Mango or Swansons Plantarum. See Culturing From Probiotics [10].
Steps
- 1-2 days before brewing make a 1 liter starter of 1.040 wort, and add your vial of WLP644. Let it sit at room temperature until use. Also make 1 liter of 1.040 wort, and pour OYL-605 into the starter. Incubate 24-48 hours at room temperature to increase the cell count.
- Mash in at 145°f for 60 minutes; if hops have to be used, then make sure to add the hops to the mash.
- Sparge as normal.
- Bring the wort to a boil and then turn the heat off (no need to boil for more than a couple of minutes).
- Adjust PH ~4.2 to limit growth Clostridium butyricum and other potential off-flavor bacteria. Not necessary, but this is a best practice suggestion. See How to Pre-Acidify for instructions.
- Chill the wort down to 95°f, and transfer to a CO2 purged carboy or keg. Add the 1 liter of OYL-605 Lactobacillus Blend starter. Allow it to sour for 24 hours. No external heating is required.
- After the souring phase, chill the soured wort down to ~70°F and pitch WLP644 Trois (boiling to kill the Lactobacillus before adding the WLP644 Trois is optional; see kettle souring). You can aerate if you feel necessary. After 2 weeks a stable gravity should be reached.
- Rack or transfer off as normal to bottles or a keg.
See Also
Additional Articles on MTF Wiki
External Resources
- Berliner Weisse Test. Ingenuity Blog.
- Berliner Weisse - the Old-Time Kettle Souring Technique. Sour Brewster Blog by Gail Ann Williams (summary of Burghard Hagen Meyer Berliner Weisse talk at CBC 2012).
- "Designing and Brewing a Berliner Weisse," by Cale Baker on Sour Beer Blog.
- MTF thread from Richard Preiss about culturing Brettanomyces from 8 vintage Berliner Weisse courtesy of Mike Marcus at Chorlton Brewing Company. Watch for updates.
- Professors Wackerbauer and Methner discussing the organisms in old bottles of Berliner Weisse, and also the acid and ester profiles. Summary: "In traditionally produced "Berliner Weißbier" the presence of the yeast species Brettanomyces bruxellensis is obligatory."
- Boil vs. No-Boil Berliner Weisse | exBEERiment Results! (Brulosophy blind triangle test).
- Tips from MTF on where to find traditional German Berliner Weisse in Germany.
- Gordon Strong's article on which category to enter fruited "Berliner Weisse" into BJCP competitions.
German Historical Texts
- Methner's thesis on Berliner Weisse, 1987 (German).
- Partial scan of Schönfelds "Obergärige Biere und ihre Herstellung" (German).
- The Groterjan memoirs, 1947 (German).
References
- ↑ 1.0 1.1 1.2 1.3 Private correspondence with Mike Marcus of Chorlton Brewing Co by Dan Pixley and Richard Preiss. 10/31/2016.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Effect of mixed cultures on microbiological development in Berliner Weisse (master thesis). Thomas Hübbe. 2016.
- ↑ Conversation with Richard Preiss regarding his results culturing from old bottles of Berliner Weisse. 08/14/2016.
- ↑ "Berliner Weisse and Brettanomyces." Ron Pattinson. Shut Up About Barclay Perkins. 09/14/2009. Retrieved 09/22/2016.
- ↑ DPMA Register. Retrieved 10/13/2017.
- ↑ Berliner Weissbier in the 1970’s (part one). Shut Up About Barclay Parkins blog. 03/08/2015.
- ↑ 7.0 7.1 Kurt Marshall. CBC 2012 Presentation.
- ↑ Samuel Aeschlimann. Eureka Brewing Blog. "#44 Traditional Berliner Weisse". 03/10/2012. Retrieved 09/02/2017.
- ↑ Jace Marti. 2017 HomebrewCon presentation: "Brewing Berliner Weisse: Moving Beyond Kettle Souring". 2017. Retrieved 09/02/2017.
- ↑ MTF conversation about substituting OYL-605 if it is not available. 04/12/2016.