Changes

Jump to: navigation, search

Tetrahydropyridine

No change in size, 13:50, 23 September 2015
m
no edit summary
===Brettanomyces===
Although the exact pathway is not known in ''Brettanomyces'' (several are proposed), the conditions for THP production are well documented. ATHP is produced by metabolizing the amino acid L-Lysinelysine, along with ethanol and a glucose or fructose molecule. Iron is also needed for THP production, although its exact role in biosynthesis is not known <ref name="Snowdon"></ref>. As with other amino acids, lysine is taken up by ''Saccharomyces'' during fermentation, and then released after fermentation. Levels of lysine fluctuate slightly through fermentation, but are generally high throughout a beer's lifetime <ref>[http://link.springer.com/article/10.1385/CBB:46:1:43 The α-aminoadipate pathway for lysine biosynthesis in fungi. Hengyu Xu, Babak Andi, Jinghua Qian, Ann H. West , Paul F. Cook. Sept 2006.]</ref><ref>[http://pubs.acs.org/doi/abs/10.1021/bi9829940 Lysine Biosynthesis in Saccharomyces cerevisiae:  Mechanism of α-Aminoadipate Reductase (Lys2) Involves Posttranslational Phosphopantetheinylation by Lys5. David E. Ehmann , Amy M. Gehring , and Christopher T. Walsh. 1999.]</ref><ref>[http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.2007.tb00249.x/abstract Elucidation of the Role of Nitrogenous Wort Components in Yeast Fermentation. C. Lekkas, G.G. Stewart, A.E. Hill, B. Taidi and J. Hodgson. May 2012.]</ref><ref>[http://www.sciencedirect.com/science/article/pii/S0308814699000710 Proteins and amino acids in beers, their contents and relationships with other analytical data. S. Gorinstein, M. Zemsera, F. Vargas-Albores, J-L. Ochoa, O. Paredes-Lopez, Ch. Scheler, J. Salnikow, O. Martin-Belloso, S. Trakhtenberg. 1999.]</ref>.
Oxygen has a stimulatory effect in ATHP and ETHP production, but its exact role is not understood. It has been speculated that since ATHP production is associated with ''Brett'' growth, and ''Brett'' grows better under aerobic conditions, that this is why more ATHP is produced under aerobic conditions <ref>[http://www.brettanomycesproject.com/dissertation/introduction/ Yakobson, Chad. The Brettanomyces Project; Introduction. Retrieved 3/10/2015.]</ref><ref>[http://pubs.acs.org/doi/abs/10.1021/jf071243e The Role of Lysine Amino Nitrogen in the Biosynthesis of Mousy Off-Flavor Compounds by Dekkera anomala. Paul R. Grbin, Markus Herderich, Andrew Markides, Terry H. Lee, and Paul A. Henschke. J. Agric. Food Chem., 2007.]</ref><ref name="Oelofse">[http://scholar.sun.ac.za/handle/10019.1/8437 Significance of Brettanomyces and Dekkera during Winemaking: A Synoptic Review. A. Oelofse, I.S. Pretorius, and M. du Toit. 2008.]</ref>. It has also been hypothesized that oxygen may have a direct effect on the THP molecules themselves <ref name="Snowdon"></ref>. ATHP production was also shown to increase when anaerobically precultured cells were transferred to an aerobic environment, indicating that oxygen has a direct role on the production of ATHP, not just a byproduct of ''Brett'' growth. Interestingly, for unknown reasons ''Brett'' cells grown under aerobic conditions and then transferred to anaerobic environment still produced significant amounts of ATHP. It has been suggested that the aerobic conditions made the ''Brett'' cells predisposed to creating ATHP <ref name="Snowdon"></ref>. Limiting oxygen exposure during kegging/force carbonating is recommended for helping to reduce ATHP production; even very small amounts can have an effect. Oxygen exposure during ''Brett'' starters could also play a role in ATHP production.

Navigation menu