Changes

Jump to: navigation, search

Brettanomyces and Saccharomyces Co-fermentation

2,329 bytes added, 17:37, 22 April 2020
no edit summary
* [[Brettanomyces_secondary_fermentation_experiment|''Brettanomyces'' secondary pitch rate experiment by Lance Shaner and Richard Preiss.]]
* [[Mixed_Fermentation#Staggered_Versus_Co-Pitching|Mixed Fermentation Staggered vs Co-pitching]].
* [[Lactobacillus#Effects_on_Mixed_Fermentation|Effects of ''Lactobacillus'' on cofermentationco-fermentation]]. ==Effects of ''Saccharomyces'' Strain Selection and Staggered vs Co-Pitch==Anecdotally, brewers often claim that the primary strain of ''S. cerevisiae'' makes a difference when co-fermented with ''Brettanomyces'', however, until recently, there has been limited scientific analysis to back this claim, and some brewers might disagree with this claim. Similar differences in anecdotal experiences have been shared by brewers in regards to co-pitching ''Saccharomyces'' and ''Brettanomyces'' at the same time, or adding the ''Brettanomyces'' pitch after the ''Saccharomyces'' fermentation has finished (often called a "staggered pitch"). ===Review of Scientific Analysis===According to [https://atrium.lib.uoguelph.ca/xmlui/handle/10214/14757 Caroline Tyrawa's masters thesis], some of the flavor impacts of the ''Saccharomyces cerevisiae'' fermentation can remain intact despite the flavor impacts of a subsequent ''Brettanomyces bruxellensis'' fermentation. This indicates that the strain selection for ''S. cerevisiae'' in a co-fermentation with ''B. bruxellensis'' can make a difference to the final product. Tyrawa tested the fermentation of three different strains of ''S. cerevisiae'' and three different strains of ''B. bruxellensis''. The strains of ''S. cerevisiae'' were the Cal ale strain, the Vermont Ale strain, and the St. Remy Belgian strain (phenolic positive). The three ''B. bruxellensis'' strains were the BSI Drei strain, a strain isolated from a winery, and a strain isolated from a brewery. Each of the 6 strains were given a primary-only fermentation. In addition, for each of the ''S. cerevisiae'' strains, they were also co-fermented in combination with each of the ''B. bruxellensis'' strains pitched at one time (a total of 9 combinations). Another set of co-fermentations were done by allowing the ''S. cerevisiae'' strains to ferment for 7 days before adding the ''B. bruxellensis'' strains (staggered pitches). The fermentations were analyzed after 21 days <ref name="Tyrawa_Masters">[https://atrium.lib.uoguelph.ca/xmlui/handle/10214/14757 Demystifying Brettanomyces bruxellensis: Fermentation kinetics, flavour compound production, and nutrient requirements during wort fermentation. University of Guelph, Masters Thesis. Department of Molecular and Cellular Biology. 2020.]</ref>.
==See Also==

Navigation menu