Changes

Jump to: navigation, search

Spontaneous Fermentation

1,916 bytes added, 23:35, 5 July 2020
update to biogenic amines
===Biogenic Amines===
Biogenic amines are produced by all living things and are present in many fermented foods and beverages. The biogenic amines that are primarily produced in fermented foods are histamine, tyramine, cadaverine and putrescine. These are produced by microorganisms that can decarboxylate amino acids, and thus their levels in some foods (particularly fish and chicken) are one potential indicator of food freshness or microbiological cleanliness. High dosages can lead to health issues associated with food poisoning or allgericallergic-like reactions such as vomiting, headache, respiratory distress, asthma, hypertension, hypotension, and cardiac palpitation. Thus, biogenic amines have been studied intensely . Biogenic amines in spontaneously fermented beers are produced mostly by enterobacteria, but lactic acid bacteria and yeasts can also produce them. Wort that is pre-acidified greatly reduces the production of biogenic amines, but small levels can still be found. These levels are below the levels found in cheese and fermented sausage and are well below the levels that are acceptable for health <ref name="Wade_2018">[https://onlinelibrary.wiley.com/doi/full/10.1111/ajgw.12366 Role of Pediococcus in winemaking. M.E. Wade, M.T. Strickland, J.P. Osborn, C.G. Edwards. 2018. DOI: https://doi.org/10.1111/ajgw.12366.]</ref><ref name="loret_2005">[https://www.sciencedirect.com/science/article/abs/pii/S0308814604002365 Levels of biogenic amines as a measure of the quality of the beer fermentation process: Data from Belgian samples. S. Loret, P. Deloyer, G. Dandrifosse. 2005.]</ref>.
Biogenic amines Some government regulations and rules exist for upper limits of hystamine in spontaneously fermented beers are produced mostly by enterobacteria, but lactic acid bacteria meet and yeasts can also produce themfish (although these limits could be applied to other food products). Wort that is pre-acidified greatly reduces the production of biogenic aminesFor example, but small histamine levels can still be found. These levels are below the levels found in cheese meet and fermented sausage and are well below the levels that are acceptable for health (histamine levels fish must be less than 50 mg/kg in the US and less than 400 200 mg/kg in the UK; these levels are usually regulated for meets and fish<ref>[https://www.mdpi.com/2304-8158/8/2/62/htm Impact of Biogenic Amines on Food Quality and Safety. Claudia Ruiz-Capillas and Ana M. Herrero. 2019. DOI: https://doi.org/10.3390/foods8020062.]</ref>. Some countries have set an upper limit of histamine in wine to be anywhere from 2-10 mg/l <ref>[https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.12833 Biogenic amines in wine: a review. Yan‐Yun Guo, Yan‐Ping Yang, Qian Peng, Ye Han. 2015.]</ref>. Loret et al. (2005) quotes the upper limit of individual amines to generally be safe for consumption to be 10 mg/l <ref name="loret_2005" />.  Loret et al (2005) examined the levels of biogenic amines in Belgian beers, including lagers, traditional ales, bottle conditioned ales, and spontaneously fermented beer (presumably lambic). They found that spontaneously fermented beers, which were 42 samples out of the total 297 samples and from 10 different breweries, generally contained the most biogenic amines, namely tyramine (associated with hypertension), histamine (associated with hypotension), and cadaverine. However, not all of these breweries produced higher levels of amines, suggesting that processing in some breweries is limiting the biogenic amine production (this process was not identified in the Loret et al study, but the process is likely to be the lowering of the wort pH to 4.5 to limit the enterobacteria phase). For example, 6 of the spontaneous fermentation breweries had levels of histamine between 20-45 mg/l, and levels of tyamine between 30-60 mg/l, which is higher than the upper limit that is generally considered to be safe for consumers (this upper limit was stated as 10 mg/l by Loret et al.). The other 4 breweries had levels of histamine and tyramine between 0-20 mg/L. Interestingly, they also found that a small number of ales and bottle conditioned ales, 21 out of 220 samples, also had levels of tyamine above the upper limit of 10 mg/l <ref name="loret_2005" />.
De Roos et al. (2018) measured biogenic amines over the fermentation lifespan of Belgian lambic beers that were pre-acidified to a pH of 4.5 before being cooled in a coolship and spontaneously fermented. They found that the initial wort had low concentrations of some biogenic amines, such as agmatine (9 mg/l), putrescine (8 mg/l), and cadaverine (3 mg/l). In one cask, the agmatine remained stable while in the second cask the agmatine declined to zero during the maturation phase, and then slightly increased to less than 5 mg/l. Cadaverine was produced during the first three weeks of fermentation and remained steady throughout the fermentation process at about 30 mg/l. Histamine was produced during the acidification phase by ''Pediococcus damnosus'' between 3 and 9 months and ended up at around 15 mg/l. Tyramine had final concentrations of around 30-40 mg/l and was formed either during the acidification phase (6 months) or the late maturation phase (18-24 months), potentially by ''P. damnosus'' or some other LAB that was at too low of a population to detect, or maybe as a result of autolysis of dead yeast cells. 2-Phenylethylamine and tryptamine were never found in the lambic beers <ref name="Roos_2018_2" />.

Navigation menu