Changes

Jump to: navigation, search

Hops

113 bytes added, 21:51, 2 December 2023
no edit summary
'''Alpha acids''' (also called "humulones" and abbreviated as "α-acids") in hops mostly consist of humulone, cohumulone, and adhumulone. Trace amounts of other forms of humulones are also present but are difficult to quantify and currently have limited research: posthumulone, perhumulone, adprehumulone, and acetohumulone <ref name="Hao_2020">[https://www.tandfonline.com/doi/full/10.1080/03610470.2020.1712641 Junguang Hao, R.A. Speers, Heliang Fan, Yang Deng & Ziru Dai (2020) A Review of Cyclic and Oxidative Bitter Derivatives of Alpha, Iso-Alpha and Beta-Hop Acids, Journal of the American Society of Brewing Chemists, 78:2, 89-102, DOI: 10.1080/03610470.2020.1712641.]</ref><ref name="Leker_2022">[https://www.tandfonline.com/doi/abs/10.1080/03610470.2022.2079944 Jeremy Leker & John Paul Maye (2022) Discovery of Acetohumulone and Acetolupulone a New Hop Alpha Acid and Beta Acid, Journal of the American Society of Brewing Chemists, DOI: 10.1080/03610470.2022.2079944 ]</ref>. The ratio of these individual acids to each other can vary based on hop variety much like total iso-α-acid percent, though generally the primary acids are humulone and cohumulone. Cohumulone has been identified by some researchers as a source of a more harsh bitterness, although similar research contradicts this statement <ref>[http://www.scielo.br/scielo.php?pid=S0100-40422000000100019&script=sci_arttext&tlng=es Fundamentals of beer and hop chemistry. Denis De Keukeleire. 1999.]</ref>. Being hydrophobic, alpha acids are mostly insoluble in wort at typical brewing pH (alpha acids become much more soluble as the pH rises towards 5.9 to 7, which is not typical for wort production <ref name="Bastgen_2019">[https://www.tandfonline.com/doi/full/10.1080/03610470.2019.1587734 Influencing Factors on Hop Isomerization Beyond the Conventional Range. Nele Bastgen, Tobias Becher & Jean Titze. 2019. DOI: https://doi.org/10.1080/03610470.2019.1587734.]</ref>). During boiling, alpha acids are isomerized into iso-alpha acids (also called isohumulones) that are soluble. Isomerization leads to roughly a 70%/30% split between diastereomeric isomers called ''cis'' and ''trans'' iso-α-acids respectively, with ''cis'' iso-α-acids being more stable over time and more bitter<ref name="Schönberger and Kostelecky, 2012"> [http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.2011.tb00471.x/abstract Schönberger and Kostelecky, 2012]</ref>. Alpha acids themselves do not taste bitter, but isomerized alpha acids (iso-α-acids/isohumulones) contribute to the bitterness of beer and have antimicrobial properties. Isocohumulone is often cited as being more harshly bitter than the other iso-α-acids, but studies of taste perception of individual iso-α-acids have not agreed with this. However, iso-cohumolone is slightly more soluble than the other acids and therefore a hop with a higher cohumulone composition may result in a beer with higher iso-α-acid for hops of equal iso-α-acid percent and use in brewing but different iso-α-acid breakdown<ref name="Schönberger and Kostelecky, 2012"/>. Alpha acids are susceptible to oxidation and the alpha acid content of a hop will decrease with storage.
There is evidence to show that during wort boiling iso-humulone and perhaps also iso-cohumulone bind with the head forming proteins, Lipid Transfer Protein (LTP) and Protein Z, to help form foam-positive structures in beer. These iso-alpha acids bind less so with LTP than they do with Protein Z. The resulting bound structures have been described as "vesicles", which are protein "bubbles" (but with no gas in them) with thick surface layers <ref>[https://www.sciencedirect.com/science/article/pii/S0268005X19325391 Vesicular structures formed from barley wort proteins and iso-humulone. Yi Lu, Peter Osmark, Björn Bergenståhl, Lars Nilsson. 2020.]</ref>. See also [https://www.youtube.com/watch?v=5F8vmuTV5Mg Escarpment Labs presentation on the science of beer foam].
'''Beta Acids''' (lupulones) are similar in structure to alpha acids and have the analogous individual beta acids (lupulone, colupulone, adlupulone, prelupulone, postlupulone, adprelupukone, and acetolupulone <ref name="Dušek_2014">[http://pubs.acs.org/doi/abs/10.1021/jf501852r Qualitative Determination of β‑Acids and Their Transformation Products in Beer and Hop Using HR/AM-LC-MS/MS. Martin Dušek, Jana Olšovská, Karel Krofta, Marie Jurková, and Alexandr Mikyška. 2014.]</ref><ref name="Hao_2020" /><ref name="Leker_2022" />) to individual alpha acids. In their original form, beta acids do not contribute to the flavor of beer because they are not soluble in beer unless the pH of the boiling wort is significantly raised to around 7 pH (which is not typical in brewing conditions) and the original gravity is relatively low (2-8°P) <ref name="Bastgen_2019" />. They are also not able to isomerize during wort boiling. Beta acids do not become soluble in wort or beer unless they are chemically modified by a process such as oxidation <ref name="Algazzali_2014" />, nor are they soluble in beer when dry hopping <ref name="Maye_EBC2017">John Paul Maye. EBC 2017 Presentation. 2017.]</ref>. Oxidized beta acids are soluble and can contribute to bitterness in beer. Oxidized beta acids are discussed more under [[Hops#Acids_2|aged hops]].

Navigation menu