Changes

Jump to: navigation, search

Dimethyl Sulfide

227 bytes added, 13:30, 4 August 2016
m
no edit summary
[https://www.facebook.com/mark.hammond.1253 Mark Hammond] from MTF used a computer program to model the conversion of SMM to DMS taking into account the [[Dimethyl_Sulfide#Mashing_and_Boiling|SMM half-life]] at different times and temperatures during various methods of the "no boil" process. Rather than using Fix's average half-life approach, numerical modeling divides the heating, boiling and cooling times into very small time steps (for the work below, a time step of 0.6 seconds was used), during which the temperature is approximated to be constant. The computer program calculates the amount of SMM converted to DMS during the time step, the amount of DMS volatilized during the time step, then plots the total DMS and SMM in the wort at the end of the time step. Finally, the program calculates a new temperature, which depends on whether the wort is heating up, being held at a constant temperature, or cooling. The program then loops through all the calculations at this new temperature, calculating all the same quantities for the next time step.
The new equations from [http://onlinelibrary.wiley.com/doi/10.1002/jib.301/full "Scheuren, Baldus, Methner and Dillenburge (2016): Evaporation behaviour of DMS in an aqueous solution at infinite dilution – a review"] were used to determine the evaporation of DMS during heating, boiling, and cooling (. The evaporation of DMS during cooling assumes an open cooling system in order to demonstrate the voltilization of DMS at temperatures below 100°C; . The DMS value will be retained in the wort at the point at which the wort is closed to open cooling systems will retain this (for example, the cooling wort can remain open so as to volatilize DMSduring cooling until the wort temperature drops below the pasteurization temperature of 60°C). Hammond assumed a linear heating rate and used Newton's Law of Cooling with constants based on empirical data taken from his own homebrewing equipment. The volume graphs were determined by evaporation rates from the heat of vaporization for water coupled with empirical evaporation rates of Hammond's homebrewing equipment. By observing these estimations, it can be seen that no-boil or "raw ale", and wort boiled for short durations, Hammond predicts less DMS than what is predicted using the traditional model.
For the DMS amounts in the following graphs, Hammond calculated the mass of DMS to be 62/164 of a gram of DMS for every gram of SMM decomposed. Since we get one molecule of DMS (62 g/mole) from each molecule of SMM (164 g/mole), we don't get one for one mass of DMS for SMM. Keep that in mind when comparing the decline in the SMM concentration graph to the DMS concentration graph <ref name="hammond">Private correspondence between Mark Hammond and Dan Pixley. 03/15/2016 - 03/23/2016.</ref>.

Navigation menu