Changes

Jump to: navigation, search

Wine

716 bytes added, 15:49, 14 March 2019
update to Lactic Acid Bacteria
===Lactic Acid Bacteria===
''Lactobacillus plantarum'' has been found to produce 3-sulfanylhexan-1-ol (3SH) from precursors in wine (3SH-S-cys and 3SH-S-cysgly) at a more efficient rate than wine yeast. 3SH is a volatile thiol that has a grapefruit-like flavor and aroma and is considered to be an important flavor component of some wines <ref>[http://sci-hub.hk/https://www.sciencedirect.com/science/article/pii/S0308814618305594 Impact of Lactobacillus plantarum on thiol precursor biotransformation leading to production of 3-sulfanylhexan-1-ol. Hideki Takasea, Kanako Sasakib, Daiki Kiyomichib, Hironori Kobayashia, Hironori Matsuoa, Ryoji Takatab. 2018. Doi: https://doi.org/10.1016/j.foodchem.2018.03.116.]</ref>. 50 ppm of total SO<sub>2</sub> can inhibit the growth of lactic acid bacteria in finished wine <ref>[https://psuwineandgrapes.wordpress.com/2018/10/26/understanding-difficult-malolactic-fermentations/ Dr. Molly Kelly. "Understanding Difficult Malolactic Fermentations". Wine & Grapes U. 10/26/2018. Retrieved 11/22/2018.]</ref>.
 
The pH of the wine can have an impact on which lactic acid bacteria species will grow. Below a pH of 3.5, ''O. oeni'' is the most dominant LAB species. ''Lactobacillus'' and ''Pediococcus'' are more common in wines above a pH of 3.5, with ''Pediococcus'' being most common in wines with a pH between 3.8 and 4.0, although ''Pediococcus'' has also been found in wines with a pH as low as 3.2. They are further inhibited by high ethanol, SO<sub>2</sub>, and high-temperature storage <ref name="Wade_2018">[https://onlinelibrary.wiley.com/doi/full/10.1111/ajgw.12366 Role of Pediococcus in winemaking. M.E. Wade, M.T. Strickland, J.P. Osborn, C.G. Edwards. 2018. DOI: https://doi.org/10.1111/ajgw.12366.]</ref>.
===Other Microbes===

Navigation menu